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Abstract

There are many computationally hard problems to which no algorithm exist that can
find an optimal solution in a reasonable time.  Genetic algorithms offer a shortcut, able
to produce good but not perfect results much faster.  They are based on the principles
of natural evolution and use selective breeding on a population of potential solutions to
gradually derive more successful solutions.  Designing the best algorithm for the job is
difficult because of the wide variety of possible variations.  This paper presents a
genetic  algorithm  toolkit  which  provides  a  library  of  components  which  can  be
connected  together  to  form many  basic  algorithms  and  then  customised  for  any
particular problem.



Acknowledgements

Many thanks to Bill Findlay for suggesting the topic in the first place and providing
guidance throughout the project.  Thanks to Cordelia Hall from whom I borrowed the
violin music notation example and who provided me with test data.  And finally to my
father for accidentally getting me interested in the whole concept of artificial life and
genetic algorithms.



Contents

1 Introduction 1

2 Genetic  Algorithms 4
2.1 Nature’s Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Computational Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Genetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Vector Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Messy Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Improved Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Competitive Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Breeding Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Toolkit  Design 1 6
3.1 Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Toolkit Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Breeding Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Parent Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Individual Creator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Travelling  Salesman  Problem 2 5
4.1 Salesman’s Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Standard Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Toolkit Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Violin  Music  Notation 2 8
5.1 Violins and Bows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Algorithm Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusions 3 1
6.1 Success and Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 3 3



Appendices

A Problem  Definition 3 4

B Statement  of  Requirements  3 5

C External  Specification 3 7

D Class  Design 5 0

E Maintenance  Document 7 1

F Status  Report 7 2

G Summary  Log 7 3

H Project  Code 7 4



1  Introduction

Millions of telephone calls are made every day and every call requires a connection, a
route  through  countless  cables  and  exchanges.   Routing  calls  is  known  to  be  a
computationally hard problem and no search algorithm can find the optimal solution in
a reasonable period of time.  Even so we expect connections to be made in seconds
rather than hours.  This and many related problems can be tackled by fast probabilistic
techniques which produce good but not perfect results.

Genetic algorithms have proved competent for this challenge and have been applied to a
variety of problems from job scheduling to image registration. They are based on the
principles of natural evolution and use selective breeding on a population of potential
solutions to gradually derive more successful solutions.  A genetic representation must
be chosen for the problem so that random changes and combinations can be made, the
biological equivalent of mutation and crossover.  Crossover combines features from
successful individuals whilst mutation ensures variation and prevents the stagnation
that often leads to poor solutions.

Potential solutions to the routing problem might be encoded as a list of exchanges
which define the path from source to destination for each connection:

Mutation could select an alternate exchange for the list and crossover combine two
previous solutions:

Each generation these solutions are evaluated and parents are selected to produce the
new population.   At  every  repetition  bad solutions  are  weeded out  and desirable
solutions are encouraged.  After many generations the population will,  with luck,
converge on some near-optimal solution.

Different  problems  pose  different  requirements  for  the  algorithm,  maximum
computation time, real-world deadlines, or solution quality.  Genetic algorithms can
vary greatly in these and other respects depending on the choice of components.  For
example, an alternate mutation operator for the routing problem could have been biased



towards overworked exchanges swapping them with those under less pressure.  Extra
time would be spent examining the exchanges but fewer generation would be required
to distribute the workload.  Changing just one component of an algorithm may reveal
markedly  different  behaviour,  making  the  design  of  a  suitable  algorithm  a  time
consuming art form.

Previous work on genetic algorithms has followed two main paths - classic and hybrid.
Classic  genetic  algorithms use  a  binary vector  representation and a  few standard
reproduction operators.  Identical algorithms can solve separate problems by their
particular interpretation of the vector.  Unfortunately such universal algorithms are
slow  to  find  good  solutions  and  slower  to  find  optimal  ones.   Hybrid  genetic
algorithms have no standard representations or operators.  Instead, characteristics of
the problem at hand are encoded into the algorithm to produce faster and better results
but at the expense of loss of generality and additional time in writing the algorithm.
For typical real world problems hybrid genetic algorithms are proving to be more
effective and the additional experimentation required is worthwhile.

Despite  their  variety  of  forms,  separate  genetic  algorithms  share  many  common
components.  A unified model which organised components into independent classes
would simplify algorithm design and a toolkit supporting such a model would expedite
experimentation  with  new components  and  encourage  software  reuse. Currently
toolkits and other techniques which combine many components in a systematic manner
are still in their infancy. This project develops MUTANTS, a fast-prototyping object-
oriented  toolkit  defining  a  range  of  generic  classes  containing  several  predefined
components. New problems, outside the normal range of the toolkit, can be solved by
extending existing classes.

The main goals of this project are to create a unifying model for genetic algorithms,
design a  toolkit  based on this  model,  and demonstrating its  flexibility  with  three
example algorithms.

When reading this report it is helpful to have some understanding of computationally
hard  problems  which  necessitate  the  use  of  probabilistic  techniques.   The  basic
principles  of  genetic  algorithms  are  introduced  by  the  report  but  more  extensive
knowledge is useful when considering some aspects of toolkit design.  Object-oriented
design techniques are used but not discussed within the report.  These techniques allow
both functionality  and state  information to  be encapsulate  together  inside genetic
algorithm components.

The remainder of this project introduces genetic algorithms, discusses the design issues
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behind the toolkit, and demonstrates its flexibility with some example algorithms.

• Chapter 2 - introduces genetic algorithms, the concepts and terminology
• Chapter 3 - follows the development of the toolkit's unifying model
• Chapter 4 - implements the classic Travelling Salesman Problem using toolkit

components
• Chapter 5 - develops the experimental components required to solve an

optimisation problem for violin music notation
• Chapter 6 - summaries the successes and failures of this project and describes

further work that they suggest
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2  Genetic  Algorithms

2.1  Nature’s  Genetics

In the world around us there are millions of species each different from the next and
within these species there are countless billions of individuals.  All of this variety stems
from the creation of life around three billion years ago.  For over two billion years the
most advanced organisms consisted of only a single cell.  The structure and behaviour
of each individual is controlled by a set of instruction called genes written in a four
letter alphabet on long strands of DNA.  Structures within the cell interpret these letters
and then changes chemicals harvested from the environment into products for power,
repair, or reproduction.

These single-celled organisms reproduce by fission,  splitting into two components,
each taking a copy of the DNA instructions.  But the environment is hostile, ultraviolet
light  streams  down  from  the  sun  and  radiation  seeps  up  from  the  rocks  below.
Occasionally letters in the instructions are damaged or the copying mechanism fails.
The offspring has slightly different genes from its parents and there are new responses
to the environment.  Sometimes such individuals are failures, condemned by their
genes.  Sometimes they just cannot compete with their fellows for food.  Most often
they  are  little  different  from  their  parents  but  occasionally  these  changes,  these
mutations, make the individual better than its neighbours.  Those who are better suited
to the environment grow faster or survive longer and ultimately give rise to more
offspring.  These offspring would inherit any advantage and replace the parent type
over a number of generations.

The process of species changing over time to become better at survival within the
environment is called evolution.  One advance that it produced was a new method of
reproduction.   Cells  began to carry some of  their  genes in rings called plasmids.
During  meetings  between  individual  they  could  exchange  bundles,  passing  the
environmental knowledge embedded within the plasmid from individual to individual.
Successful  plasmids  spread  amongst  the  population  but  unsuccessful  plasmids
encumbered their carrier who would die sooner and have less chance to spread the bad
genes.  Greater benefits came when certain genes came together that worked better in
combination than in isolation.  The likelihood of random mutation equipping one cell
with both genes is low but with the crossover of genes between individuals these traits
can arise separately and, once they become common in the population, join together
within one individual.

From this soup of tiny creatures all the diversity of the planet has arisen, from roses to



butterflies,  mushrooms  to  mankind.   Single  cells  have  grouped  together  to  form
complex multi-cellular lifeforms.  In these higher organisms genes are arranged in
structures called chromosomes.  Humans have 26 pairs of chromosomes, one of which
is either an XX or an XY pair, the first pair for a female and the second for a male.
This division of the species helps with the replacement for plasmid exchange used by
simpler creatures.  Two individuals each provide one half of the chromosomes needed
to  make  up  a  complete  set.   Combining  chromosomes  is  an  opportunity  to  gain
something better for their offspring.  Deficiencies in one parent can be made up by the
corresponding genes from the other parent.  Like any other animal humans try to select
a successful mate to get the best chance of survival for their child.

At the change over from single celled to multi-cellular forms there was a rapid period of
development and diversification called the Cambrian explosion.   A  huge  range  of
species appear but most have no living relatives today.  Although they were well
equipped for life they did not survive.  Perhaps they had disadvantages compared to
others but maybe they were just unlucky.  Such die backs are common throughout
history.   The  dinosaurs  lived  on  Earth  for  about  150  million  years  before  their
extinction around 65 million years ago.  One reason given for their extinction was the
impact of a asteroid in the area which is now Central  America.   Devastation and
destruction followed but more importantly disruption to the environment.  Animals that
had done well died out unable to adapt fast enough.  In a geological instant half of
species on the planet were wiped out.  This is just one example of the many mass
extinctions our planet  has suffered.   With each such event the diversity of life is
devastated and will never return to the same extent.

Evolution is  the  aggregation of  thousands of  semi-random events  and the  natural
pressure to reproduce or die.  This has been compared to climbing a mountain.  Starting
at the bottom a species rises up through ever fitter forms.  There is no going back and
those who try will die.  A species cannot even stop upon reaching one of the mountain
peaks because these mountains are not constant.   The ever changing physical and
biological environment determines what is good and bad for each generation and with
this  mountains  slowly  rise  and  fall.   Every  species  must  continually  search  for
perfection and in so doing will change what is perfect for those around it.

2.2  Computational  Genetics

Problems can often be simplified to the search for an optimal solution through a range
of possible solutions.  Such search spaces can be huge and an exhaustive search would
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take an unrealistic time even with the fastest computers.  Simple problems may have
linear time complexity.  A problem of size 10 will take twice as long as a problem of
size 5. Intractable problems can have factorial time complexity.  A problem of size 10
will take 10*9*8*7*6 times longer than a problem of size 5.  Figure 1 shows the time
taken to solve linear and factorial time complexity problem on the same computer.
Such intractable problems must therefore be solved by pruning away or ignoring most
possibilities.

Artificial intelligence problem solving strategies fall into two categories - strong and
weak method.  A weak method makes few assumptions about the problem domain and
hence is portable to other areas but little pruning is done and time scales grow rapidly
for large problems.  A strong method avoids this by making major assumptions about
the problem domain but it may require significant redesign when moved to even a
closely related problem.  In between these two extremes genetic algorithms can be
tuned to become strong or weak, either widely applicable or problem specific.  Aspects
of genetic algorithms can be seen in a number of other weak search techniques.

Randomly generating many solutions to a problem is usually simple.  Each solution can
then be evaluated and given a score according to its success.  Call routing solutions are
just  lists  of  connected exchanges,  these  could  be  randomly assigned.   Evaluation
involves adding up the workload at each exchange.  Positive scores for under capacity
exchanges and penalty points for overworked ones.

Hill climbing is a more directed approach similar to a specie’s climb up the mountains
of fitness.  Starting with a single random solutions and mutate slightly, swapping a
single exchange.  Perhaps generate a few more variations to get an idea of the locale
area.  Then pick the solution with the highest evaluation and start mutations again.
Evaluations  will  rise  until  a  optimal  solutions  is  found.   However,  this  may not
represent the global optimum but rather a local peak with higher values to be found
elsewhere.  To increase the chances of finding these continue with a new random
solution and hope for a better final solution.
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Simulated annealing introduces chance into its climb to avoiding the traps of local
optimums.  An identical random start and mutation but the best evaluation is not always
selected.  The probability of choosing a new solution is a function of both old and new
evaluations and an additional parameter T known as the temperature.  Initially the
temperature is high and so is the probability of selecting a new solution independent of
its evaluation.  This continues until the system reaches some sort of balance with little
more progress being made.  The temperature is lowered and it is allowed to settle again
closer to the optimum peak.  At a temperature of zero the system acts like a hill climber
to find the locale and hopefully global optimum.

John Holland was the first to apply additional natural principles to problem searches.
Within a population of random solutions crossover occurs between individuals occurs.
Such combinations can bring together successful attributes making increasingly better
solutions.  Since their introduction genetic algorithms have been employed on a variety
of search space and optimisation problems including call routing, job scheduling, and
database query optimisation.

Genetic algorithms are derived from the field of biology and much of the terminology
has been borrowed.  A solution is know variously as an individual,  a structure,  a
genotype, or a string.  Sometimes chromosome is used as an alternative but this is
misleading as some individuals could contain several chromosomes.   Chromosomes
are sequences of genes, also called features, characters, or decoders.  Fixed positions
within the chromosome which hold particular characteristic are loci and the values that
might appear are alleles or feature values.   Finally data within an individual is its
genotype but the meaning of this representation as defined by the user is its phenotype.

2.3  Basic  Algorithm

Genetic algorithms have six basic steps in common.  The Blues is an artificial problem
manufactured to illustrate these.  Possible solutions to the problem are the integers from
0 to 255.  Each integer represents one of four colours: red, blue, purple, and black.
Success  for  the  algorithm is  measured  in  the  number  of  blue  solutions  found  in
comparison to other colours.

First, a set of potential solutions must be initialised to form the starting population.  To
represent numbers in the range 0 to 255 a random 8-bit binary vector is used.  Figure 2
shows  a  selection  of  individuals  from  the  population.   Every  number  has  a
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corresponding colour picked by a secret function (which examines the first two bits of
the binary representation).

Second, each solution is evaluated according to its fitness, in this case its colour.  Blue
is  given priority and scores 10.   Lower scores are for  solutions further down the
mountain of fitness – 5, 3, and 2 are given to red, purple and black respectively.

Third,  new  solutions  are  created  using  mutation  and  crossover  on  the  current
population, typically with more crossover than mutation, say a 3:1 ratio.  Conserving
and combining features  is  generally  more helpful  than varying them.  A mutated
descendent  will  differ  from  its  parent  in  only  a  single  bit  as  seen  in  Figure  3.
Crossover requires two parents and produces two offspring.  Select a random point
along the binary vector and split each parent at this point.  Then exchange the tail
sections of each vector to produce the offspring shown in Figure 4.

Selecting those individuals to breed requires some element of chance.  In nature some
animals are lucky and some unlucky but those with better genes reproduce more.
Genetic algorithms allow more offspring from high scoring individual than from low
scoring individuals.  A technique called roulette wheel selection has a probability of
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choosing an individual proportional to its evaluation.  The Blues uses this to select the
primary and, if necessary, the secondary parent for reproduction.

Fourth, room must be made within the current population for the new individuals.
Here the entire population is removed.

Fifth, the new solutions are evaluated using the 10, 5, 3, 2 scoring system and inserted
into the population.

Sixth, if there is no more time then stop, otherwise go back to step three and make
some more individuals.

From a random start the roulette wheel picks out more blue individuals than other
colours.  If mutation makes an offspring then there is only a 2 in 8 chance that a colour
change will take place.  If crossover is used then there is only a 1 in 7 chance that the
crossover point will be between the first and second bit, no other points can affect the
offspring colour.  Even if that point is chosen the other parent would have to differ in
the second bit to produce a change.  From this and the 3:1 crossover-mutation ratio it
can be calculated that there is only a 13 in 122 chance (about 11%) of a blue individual
giving rise to a non-blue offspring.  With each generation more blues will be picked
and most will stay blue.  Other colours are also resistant to change but are picked less
often.  As can be seen from Figure 5, blue wins on average.  Each dot is an individual
and each column a population so the change from left to right represents the evolution
of the population.   The population is  never totally blue because these probability
predictions only work well for very large populations.  In small populations of 32, as
above, chance may result in another colour being predominant.

In summary the steps of a genetic algorithm are:

1. Initialise population with individuals
2. Evaluate each individual in the population
3. Create  new individuals  by  mating  between  those  in  the  population;  apply

mutation and crossover as the parents mate
4. Delete members of the population to make room for the offspring
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5. Evaluate the new individuals and insert them into the population
6. Stop if time is up, otherwise go to 3

Classic genetic algorithm components are shown in The Blues.  A binary vector used to
represent integers was the first ever genetic algorithm representation.  Initial solutions
were generated with random binary initialisation which fits almost any circumstance.
Evaluation  technique  are  normally  unique  to  an  algorithm but  in  many instances
decoding  produces  numbers  and  mathematical  functions  are  then  applied.
Reproduction is with single bit mutation and single point binary crossover.  Deletion of
old and insertion of new individuals is often treated as a single process with one name.
A generational model creates an entirely new population for each cycle.

2.4  Genetic  Theory

Current  mathematical  theory  for  genetic  algorithms  is  based  on  a  binary  vector
representations.  The notion of a schema is introduced,  a template made of 1’s, 0’s,
and *’s.  A schema represents all strings which match it on all positions other than *.

Consider the schema (11******) which matches 64 strings including

(11000000) (11111111) (11010101)

It would also match all blue solutions from The Blues.  Every schema matches 2r

vectors, where r is the number of * symbols in that schema.  The order of a schema is
the number of fixed positions, ie. the number of 0’s and 1’s.  The defining length of a
schema is the distance between the first and last fixed position.  These are written o(s)
and (s) respectively, for example:

S1 = (***001*110), o(S1 1) = 10 - 4 = 6

S2 = (****00**0*), o(S2 2) =  9 - 5 = 4

S3 = (11101**001), o(S3 3) = 10 - 1 = 9

A schema’s order proves useful in calculating the survival probabilities under mutation
and the defining length can be used similarly under crossover.

A few simulations or a bit of mathematics will show that an above average schema
gives rise to an exponentially increasing number of offspring in future generations.
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Further, low-order schema are more likely to survive the recombination process of
crossover.  From this work has come two theories:

Schema Theorem - Short, low-order, above-average schemata receive
exponentially increasing trials in subsequent generations of a genetic
algorithm.

Building Block Hypothesis - A genetic algorithm seeks new-optimal
performance  through  the  juxtaposition  of  short,  low-order,  higher-
performance schemata, called the building blocks.

For a more detailed explanation and proof of these theories see Michalewicz (1992).

2.5  Vector  Representation

Vectors, also called strings or arrays, are sequences of values all belonging to the same
type.  Bits, or booleans, are a typical choice but integers, real numbers, or complex
structures are equally valid.

With the common binary vector representation comes a number of genetic operators for
mutation and crossover.  Single bit mutation and one point crossover have already been
described.  Multiple applications of these  operators can give rise through a number of
generations to any possible recombination of an individual but most would be stopped
in the first generation.  There are several crossover operators which provide a more
diverse  mixing  of  genes. Two  point  crossover chooses  two  random  points  and
exchanges the central section of between individuals. Multi-point crossover extends
this to a fixed arbitrary number of point pairs. Segmented crossover works  with
random number of point pairs. Shuffle crossover first randomly permutes the binary
vector, applies another crossover operator, and then reverse permutes the vector.

Although flexible binary vectors have their limitations.  To represent 100 real numbers
in the range -500 to 500 accurate to the 6th decimal place would require 3000 bits.

Such a long vector gives a search space of 10 1000 possibilities.  Different representation

can be chosen to help the genetic algorithm, say a vector of floating point numbers.
Specific mutation and crossover operators are needed for this representation. Random
mutation replaces  old numbers  with new ones chosen from a specified range and
random creep adjusts each number up or down by a small amount.  Crossover can
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work in the same way as binary representations or can combine two numbers as an
averages.

With the introduction of specified ranges for numeric values reproduction operators
may drive an individual outside these ranges.  Such individuals represent an impossible
or illegal solution.  Careful design of operators can prevent this but it is not always
possible.   One  option  is  to  assign  a  penalty  to  the  individual  during  evaluation.
Selection pressure could then drive out these poorly formed individuals.  On the other
hand these individuals may have evaluations high enough to overcome this penalty and
the  population  would  become  crowded  with  unusable  individuals.   A  more
computationally intensive option is to repair the individual, removing its illegal features
to produce the closest legal alternative.  This can defeats the purpose of a reproduction
operator if the final individual looks nothing like its parents.

2.6  Messy  Representation

In nature individuals carry redundant or duplicate information, such as multiple copies
of genes, or paired chromosomes.  This is an important feature of nature’s robust
designs.  Messy genetic algorithms copy this, allowing redundant or even contradictory
genes.  A real number vector shows how this is done (0.1, 0.2, 0.4, 0.8) is encoded as
((1, 0.1), (2, 0.2), (3, 0.4), (4, 0.8)).  Each value has been replaced by a (position,
value) pair.  Other alternatives include: reverse order ((4, 0.8), (3, 0.4), (2, 0.2), (1,
0.1)),  duplicates ((1,  0.1),  (2,  0.2),  (3,  0.4),  (4,  0.8),  (4,  1.6)),  and omissions ((1,
0.1), (2, 0.2), (4, 0.8)).  Vague representations have to be evaluated with some default
values and arbitration between conflicting values.

Only two crossover operators are required - cut and splice.   The first  breaks  one
individual into two less specified individuals.  The second joins two individuals into
one more specified individual.

2.7  Improved  Initialisation

Nature never starts with a clean sheet, new problems are always met with modifications
to previous solutions.   Following this  lead genetic algorithms can start  with non-
random populations.   If  an  initial  population  of  100  individuals  is  required  then
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randomly generate 500 and pick the best.  Starting with these solutions is likely to
speed up the genetic algorithm’s search but could also hinder it in finding less obvious
but higher scoring solution.

In an effort to cover the search space completely solutions can be chosen to be as
diverse as possible.  Generating this diverse population will take extra time.  But by
preventing any bias in the initial population the genetic algorithm has its best shot at
finding the optimal solution.

Sometimes good results can be achieved by combining genetic algorithms with existing
systems to produce hybrids exhibiting the best behaviour of both.  The previous system
starts by quickly generating a number of good solutions.  These can be fed into the
genetic algorithm as the starting population, hopefully concentrating the search to a
more productive area.

2.8  Competitive  Fitness

Evaluation functions try to score a representation fairly by what it can achieve, nature
rarely does this.  Instead examinations are competitive with little hope for the losers, no
matter how good.  Genetic algorithm’s equivalent are fitness functions.  After all
individuals have been evaluated they pass to a second stage where their evaluations are
compared against each other.  As usual there are several different fitness techniques that
can be applied, only some are mentioned here.

Windowing works on the basis of a certain minimum requirement.  All individuals will
have this amount removed from their initial evaluation.  In this smaller range of positive
values the differences between individuals are emphasised.  What amount to remove
must be decided, perhaps some fixed minimum score, perhaps equal to the minimum
evaluation present, or some more stringent value.

In addition to emphasising differences fitness functions can reduce them. Linear
normalisation ranks all  individuals’ evaluations,  1st,  2nd, 3rd,  and later places are
awarded.  For 1st place the reward is a larger but not overwhelming share of the
offspring.  This prevents a single high evaluation individual from producing the lion’s
share of offspring in the next population.  If this does happen important genes can be
lost and never recovered.  Those in lower places are rewarded less, and those in last
place may receive nothing at all.
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2.9  Breeding  Techniques

Previous sections have looked at specific pieces which make up genetic algorithms but
the broader picture has been ignored.  These pieces must be pulled together by a
breeding  techniques  such  as  the  generational  model  used  in  The  Blues.   Before
examining other models a few general parameters should be considered.

Population size, for instance, can have a great affect on the performance of the genetic
algorithm in more ways than one.   Choosing a small  population size reduces the
possible diversity of individuals and may well lead to sub-optimal solutions.  Choosing
a large population size will slow the algorithm down as there are more individuals to
deal with and each generation will take longer.

With the selected reproduction operators there must also come the relative importance of
each.  Mutation explore new possibilities but can be destructive as well as creative.
Crossover  is  safer,  working with  preexisting building blocks,  but  if  an  important
characteristics is lost it is never recovered.

When should a genetic algorithm stop?  It may be when there is no more time and an
answer due.  Perhaps a certain number of generations has always proved sufficient in
the past and so it seems appropriate to stop then.  If a solution is required with a certain
minimum evaluation then the best individual from each generation can be compared
against it.  When there are no other outward criteria with which to make the decision it
is best to stop a genetic algorithm when the majority of the population has converged
towards a single answer and no more progress is being made.

The generation model sometimes suffers from the loss of the best individual through
chance, particularly when the population size is small.  An elitist component can be
added to several models to prevent this.  Before normal reproduction begins a copy of
the  best  individual  is  made and transferred  to  the  new generation  to  guarantee  a
continuation of its line.

An alternative mechanism to achieve the same effect is to replace a generational with a
steady state model.  Here only a few new individuals are generated at a time.  Now it
must be decided which individual should be replaced.  One particular alternative called
preselection compares offspring with their parents and choose the better individual.  Or
the choice can be made randomly, the only selection pressure will be that provided by
parent selection.  Or the worst individuals in the population can be chosen.  Another
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technique which goes particularly well with the steady state model is the imposition of a
duplicate individual ban.  No newly created individual may be the same as any other
existing individual.  It is computationally expensive to perform all the comparisons but
a good way to ensure diversity within the population.

This only scratches the surface of modelling techniques available.  Here are quick
summaries of a few more.

• Inbreeding - crossover within small populations to emphasis good traits.
• Crossbreeding - crossover between diverse individuals to combine different

traits.
• Multi-criteria sub-populations - separate populations with different evaluation

functions, occasional crossbreeding between populations.
• Co-evolutionary systems - several parallel genetic algorithms whose evaluation

functions are interdependent.
• Mating template - mating only permitted between individuals of the same type.

Genetic Algorithms
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3  Toolkit  Design

3.1  Information  Flow

Genetic algorithms have a great many variations but also share common points.  All
have the common features of initialisation, evaluation, populations, and reproduction.
From here  that  the  design  of  the  generic  toolkit  was  started  by  considering  the
information pathways of the algorithm.  However, this is insufficient because certain
specialisations are not described in such a model.  In particular there were three areas of
deficiency.  A large group of genetic algorithms use fitness functions to set up a more
competitive  environment.   Most  genetic  algorithm make a  considered  opinion  on
whether to finish.  Finally some genetic algorithms monitor their changing populations
over  time for  historical  tracing or  additional  processing,  these are  all  specifically
mentioned in the statement of requirements.  Taking all these aspects into account
produced Figure 6 which shows information steps within a generic genetic algorithm
and the information flow between steps which typically consist of potential problem
solutions.  Those steps dealing with the three aspects which are not common to all

Figure 6 - Information flow
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algorithms are shown in grey.

3.2  Toolkit  Components

From the beginning of the project the intention had been to produce an object-oriented
toolkit.  Such a model is well suited to the desired extensible toolkit.  Abstract classes
would provide the toolkit and users inherit concrete classes for use in a particular
genetic algorithm.  This facility would also facilitate the construction of the toolkit
enabling the range of services to be slowly expanded.

Primary in toolkit design was the notion of flexibility and the speed at which a new
algorithm could be assembled.  Even so this had to be balanced against implementations
which would take  an unacceptably  long time to  run.   Several  genetic  algorithms
suggested minor variations which did not fit in with the majority of other algorithms.
For example the elitist breeding technique is an extension of the standard generational
technique.  No other similar behaviours are mentioned in the literature and so the toolkit
would have to implement elitism separately and either  flag if  active or  not  for  a
particular algorithm.  Such behaviour is contrary to the generic ideal and slows down
many algorithms for benefit a few.

Fortunately a clue to the solution is already described, Lawrence Davis (1991).  Two
stages from the standard genetic model, the deletion of old individuals and insertion of
new  individuals,  are  often  placed  together.   This  suggested  consolidating  these
procedures into a single object, one to do both jobs.  A Model object would also take
over most other stages of the genetic algorithm, its exact behaviour depending on the
parameters such as reproduction operators but also on that model’s particular make up.

Figure 7 shows final choice of classes for the toolkit and the dependencies between
them.   Each  arrow represents  one  class’s  knowledge  about  another.   Around the
diagram is a circle, this is just a combination of several dependency arrows.  As can be
seen the Model object has direct control over almost all other classes within the toolkit.
Several  objects  have  appeared  in  the  diagram  which  do  not  seem  to  have  any
correspondence to the information flow diagram.

Random is a pseudo-random number generator to provide for the probabilities needed
by a genetic algorithm.  By using a single controllable generator for the algorithm
experiments can be replicated.  Simply by storing the initial random number seed and
the parameters used by the genetic algorithm, the same results may be obtained again
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and again.  If real or arbitrary random numbers were used every individual would have
to be recorded and traced to provide the same service.

Representation is a abstract holding place for a single problem solution.  Concrete
examples of this class include binary vectors, ordered lists of integers, or 3D matrices.
With all different representations packaged in the same way they may be dealt with
equally  by  most  of  the  toolkit.   Only  functions  which  depend  on  specific
representations such as evaluation and reproduction operators need separate them.

Evaluation is  apparently only a function and does not need object  status.   Simple
evaluations can indeed be calculated directly from the representation but many need
auxiliary information.  An object provides storage space for such details, an example of
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such is shown in Chapter 5.

Individual is  the  encapsulation  of  a  Representation.   Each  individual  is  uniquely
identifiable not only within a single generation but within all generations in a particular
algorithm.   Even individuals  with  identical  representations  may be  differentiated.
Tracking  the  development  of  individuals  over  time  is  impossible  without  this.
Population provides a simple set for storing individuals.

Ending makes the decision on whether or not another cycle of the genetic algorithm
should be made.  Several concrete class are available including ones based on time,
generation count, and target evaluations.  Complex combinations can be formed by
joining simple ending objects with And, Or, or Xor operators also implemented as
Ending objects.

3.3  Breeding  Model

Model encompasses  both  breeding  technique  and  major  control  of  the  genetic
algorithm.  All algorithms are to be dealt with in a uniform fashion and because of this
the Model is sometimes burdened with additional work.  Here is the final design used
for this class formatted as - method: arguments > result:

ctor: Creator,population_size > Model

ctor: input_stream > Model

print: Model, output_stream

run: Model, Evaluation, Fitness, Selector, Creator,

Ending

run: Model: Evaluation, Fitness, Selector, Creator,

Ending, History

get_population: Model > Population

Two creator methods (ctor’s) are used, either populating the model with newly created
individuals or recovering individuals specified in an input stream.  A complement to
this is the print method which records the current status of the model for prosperity.
The internal population may be accessed to obtain the result after the algorithm has

finished.  Most work is done by the run method which take several arguments, each

specifies one aspect of the genetic algorithm.  Two versions of run are present, one

which takes a History object, the other does not.  This is one example of where a
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decision has to be about generality and efficiency.  Recording the births, deaths, and
parentage information in a genetic algorithm will obviously take extra time.  Hence two
separate methods, only if this user requires the feature must the additional time be
taken.

Other  classes  keep  the  work  which  must  be  done  by  the  Model  to  a  minimum
implementing any single instance is not difficult.  Here is an example of the run method
from the Generational Model which is used by The Blues:

done := false;

while not done loop

Attach(Fitness, Model.Population);

Attach(Selector, Fitness);

Create(Reproduction, population, population_size);

Transfer(Model.Population, population);

Done(Ending, done);

end loop;

3.4  Fitness  Function

Fitness functions are applied after evaluation and before parent selection.  An equivalent
could also be used when removing individuals from the population but this is not a
common feature.  Evaluations of all individuals in the population must be presented to
the fitness function so that comparisons can be made.  One possibility is to in effect
reevaluate each individual, assigning them this new value, and then carry to on as
normal.  Although easier to implement than other schemes this was rejected because it
would  destroy  the  initial  evaluation  which  may  be  required  again  and  could  be
expensive to calculate.

One solution is a wrapper around the Population class.  A fitness object is passed into
the genetic model and is then be attached to a given population.  When attached the
object calculates an associated fitness score once for each individual.  To obtain fitness
values  a  fitness  iterator  is  created which moves  through the  population returning
individuals and their finesses.  A separate iterator is required so that multiple scans of
the population can progress at the same time.

This created a small problem, The Blues does not need a fitness function but must have
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one because of the decision to apply the same methods to all genetic algorithms.  Along
with  standard  fitness  function  -  Windowing,  Linear  Normalisation,  and  so  on  -
another, the Unity Fitness class had to be introduced.  For each individual in the
population this returns the same value as found during evaluation.  Null operations
such as this are often not noticed within a system until a rigorous examination is made.

3.5  Parent  Selector

From a fitness capped population individuals must be selected for reproduction.  The
obvious approach is  an abstract  Selector  object  and a number of  concrete classes
representing  the  different  ways  of  choosing  individuals.   Common  examples  of
selection techniques are best, random, and roulette wheel.  The consistent approach to
genetic algorithms required by the toolkit means others classes are needed.  Some
particular genetic algorithm prefer low values to high values.  Normally one would
change the evaluation function to invert values but in preference to that other selectors
can be used lowering the burden on the algorithm’s implementor.  For example an Anti-
roulette Wheel Selector returns individuals with a probability inversely proportional to
its evaluation.  If this class replaced the Roulette Wheel Selector in The Blues then
black would become the preferred colour.  Implementing selectors as objects also gives
some speed advantages.  When attached to a population any necessary calculations to
make the selection can be done once and only once.  For example in the instance of a
best individual selector one single search for this individual is made and the result can
then be recorded.  Any future calls to the selector will produce the same individual
instantly.

3.6  Individual  Creator

Creator class combines both initialisation and reproduction.  Original designs had
included two separate class but these were merged in an effort to reduce the complexity
of the toolkit.  Both perform similar jobs, the production of new individuals, and so
have similar requirements.   Initialisation at the start  of a genetic algorithm in the
standard case does not normally require parent individuals to draw on.  Some genetic
algorithms start with a population of specialised individuals who have been generated in
other genetic algorithms.  Initialisation becomes a matter of cloning old individuals into
the new population.  Equally, although reproduction normally involves parents, some
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algorithms may occasionally introduce completely new individuals to keep up genetic
diversity.

Given  that  several  reproduction  operators  are  used  in  each  genetic  algorithm  a
mechanism must exist to choose between them.  One possibility was to pass in a set of
reproduction operators for each run of the genetic algorithm.  Associated with each is a
weight determining the probability of that operator being chosen.  A more advanced
technique categorises reproduction operators as to whether or not they are combined
operators.  That is whether they just mutate or whether they mutate then crossover
individuals.  Repair algorithms can also be implemented as combination operators.
First the normal reproduction operator is applied and then the resultant individual is
corrected of any defects, converted back into a legal representation.  This technique was
chosen and implemented using a  tree  structure.   A single  combined reproduction
operator is passed into the Model which would execute the appropriate leaf operators.
Shown in Figure 8 are special And, Or, and Xor operators which form internal nodes.
This  reproduction  is  one  but  not  both  of  (both  Crossover  and Mutate)  or  (either
Crossover or Mutate or both).  Both and Xor class hold weights to determine the
probability of each branch of the tree being chosen.

Some implementation issues have to be resolved.  The problem of getting information
from the selection operator to one or more reproduction leaves.  One solution was to
give each operator its own selector during initialisation, some attached to the population
through the fitness class and others attached to sibling reproduction operators.  Figure 9
shows selectors as arrows pointing towards their  source.   The population class is
represented by small grey circles.  Such a design would treat all creation events evenly
whether they draw from the old population or another operator.  Each stage would have
to create complete individuals ready to pass on to another operator and this would slow
the algorithm.  Also the ancestry of an individual might get a little chaotic with some
parents never existing in any population.
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The final solution was for the reproduction tree to be informed of its selector and this
information propagated down the tree to all reproduction operators who required it.
During a creation event control was provided through the combination operators.  The
And operator will have to pull individuals from the selector and pass them first to its left
hand operator and receiving solution representations but not individuals, these bare
representations are then passed to the right hand operator, changed and returned before
begin packaged as individuals.  The Xor operator can determine the relevant sub-tree
and pass control down.  The Or operator must decide to use either one or both sub-trees
and can then act like an Xor or And operator respectively.

Several methods are required to implement this technique.

create: Creator, Population, size

create: Creator, History, Population, size

parents: Creator > number

breed: Creator, [Representation], Representation >

succeed

When the  Model object require more individuals the create method is called.  Two

variants were provided, one to keep track of ancestry, the other not.  Combination

operators use the parents method to plan their strategy.  Finally the breed method

produces new representations which could then be wrapped up as individuals after
more modification.

A question never adequately answered during the design of the toolkit is how many
individuals should a crossover produce.  Classic genetic algorithms set the answer at
two, or for some of the more complex crossover, a larger but fixed number.  Creating
multiple individuals did not mesh with the toolkit’s generality.  When asking for a
single individual a crossover might be selected from the tree and that would produce
two or more individuals instead.  The toolkit could not know how many to expect and
would not know what to do with any surplus.  The chosen solution was to only ever
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create a single individual for any reproduction operator.  More operations might have to
be performed but there can be no confusion about the number of individuals produced
and no time wasted on creating surplus individuals.
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4  Travelling  Salesman  Problem

4.1  Salesman’s  Job

For the first  demonstration of the toolkit’s power the purpose was to explore the
workings of the toolkit rather than develop a new genetic algorithm.  Several problems
are well known in the genetic algorithm field, one of these is the Travelling Salesman
Problem which is also a common test for other search space techniques.  Because of
this large sets of data readily available for test purposes with optimal solution already
found by exhaustive search.  As a bonus one of standard implementations is both
simple and will exercise different toolkit components than The Blues.

The travelling salesman problem involves planning a route from city to city for a
salesman to travel so that each city is visited once and only once apart from one city
which should be both start and finish point.  Additionally the total cost of travelling on
the journey should be minimised.  Another way to describing this problem is as finding
the  minimum cost  tour  among all  permutations  of  the  n  cities  in  the  salesman’s
itinerary.  Although expressed in terms of a salesman travel plans this problem is
equivalent to many other distance minimisation problems.

 "Circuit board drilling applications with up to 17,000 cities are mentioned... ,
X-ray crystallography instances with up to 14,000 cities are mentioned... , and
instances arising in VLSI fabrication have been  reported with as many as 1.2
million cities.... Moreover, 5 hours on a multi-million dollar computer for an
optimal solution may not be cost-effective if one can get within a few percent in
seconds on a PC. Thus there remains a need for heuristics"

Johnson (1990)

These search spaces are often extremely large and any savings that genetic algorithms
may give are very valuable.

4.2  Standard  Decomposition

Although several genetic representations have been used for the Travelling Salesman
Problem the path representation is both common and simple.  In this the tour is stored
as a list of n cities in chronological order.  Evaluation is a matter of totalling the
distances for each leg of the journey remembering to include the final trip back to the
initial or home city.



With this ordered list representation comes the ordered crossover operator which is

shown in Figure 10.  Given two parents, p1  and p2, a subset of cities is chosen from

the list.  To create the first offspring p1  is copied and the selected subset of cites is

reordered to match that found in p2 .  The second offspring is similar, a copy of p2 with

p1’s ordering imposed.  A corresponding mutation is the order mutation operator which

randomly selects two cities and inserts one before the other as shown in Figure 11.

All other components in this algorithm’s implementation are identical to those used by
The Blues.  This includes roulette wheel selection for both parents and a generational
breeding model.  Any fitness function is appropriate but in this case the unity class was
reused.

4.3  Toolkit  Performance

It is difficult to rate the first performance of the toolkit because many of the standard
components had to be implemented in parallel with the algorithm.  This does shows the
extensible  nature  of  the  toolkit.   There  is  no  difference  between  the  original
construction of the toolkit and the construction of additional user components.  Both
just require simple objects to be inherited from the abstract classes provided.  For this
implementation of the Travelling Salesman Problem only a new evaluation class and
main program body were required, ordered lists are part of the toolkit design.
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Initial results were very promising.  When the best individual was monitored during the
algorithm it showed steadily lower costs with each generation.  Unfortunately this
value  quickly  dipped  below  the  optimal  cost  solution  defined  for  the  test  data.
Investigation showed an error during the initialisation of individuals which allowed a
salesman to stay in the same city for much of the time.  After correcting this error
results  were  still  positive.   Costs  dropped  slowly  over  the  course  of  the  genetic
algorithm.  Although the best routes were far longer than optimal route known they
were shorter than the random routes which made the base population.  A summary of
the results can be seen in Figure 12, several of the optimum route segments have been
found  by  the  genetic  algorithm.   Other  genetic  algorithms  implementations  have
performed much better than but here it was sufficient here to prove MUTANTS was
capable of this implementation.  Continued experimentation would have required more
standard  toolkit  components  to  be  built.   Although  any  single  component  takes
relatively little time to implement, making large numbers of them would have taken up
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precious time.
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5  Violin  Music  Notation

5.1  Violins  and  Bows

To play a single musical note on a violin a particular length of bow is required.  When
playing music the bowing direction must change frequently to prevent running off the
ends of the bow.  Sheet music can be marked to indicate where to change direction to
achieve the best from the music.  Particular passages should played on the upstroke of
the bow, others on the downstroke.  Some sections require a constant bow direction
whereas other are better if the bow changes direction.  Finding where these bowing
changes should be to produce the initial annotated music is a lengthy business based on
educated guess work.

Here is a complex search space currently laboriously explored by hand.  Automation
would at least speed up the markup process with final polishing done by the composer,
perhaps it could even produce playable results within minutes instead of hours.

5.2  Problem  Analysis

As this is  an entirely new problem the first  step is  to make an analysis from the
viewpoint of a genetic algorithm.  A representation must be found to hold a potential
solution  to  the  problem.   Music  can  be  thought  of  as  a  sequence  of  notes  each
associated with the bow length required to play that note.  An appropriate representation
here seems to be a sequence of numbers equivalent to the bow lengths.  In addition at
each note the bow may either change direction (c) or not change direction (n).

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

n n n n n c n c n c n c n n c n n

Rules dictated by the music can also be encoded alongside.  Bow direction maybe
required to be upward (U), downward (D), changing (C), or not changing (N).

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

n n D D D c n C n c n U U n c n n

Each individual carries different lower-case values but identical upper-case values and
lengths.  Obvious mutation operators would swap letters around but this could create
illegal  solutions,  ones  which did  not  follow the  rules.   Illegal  solutions  could  be



repaired or given penalty points during evaluation but neither is ideal.  Separating fixed
and variable parts of the solution avoids both problems.  Then only the variable part
need undergo mutation and crossover.

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

- - D D D - - C - - - U U - - - -

n n       c n   n c n     n c n n

The fixed upper section is common to all individuals and so can be factored out of the
individuals and placed in the evaluation function.  The variable lower section consists
of only two possibilities and is therefore suited a binary vector representation.

Evaluating the performance of an individual is a matter of simulating the position of the
bow on the strings.  Better or lower scores awarded for the fewer changes of direction.
Unfortunately it now becomes apparent that illegal solutions are still possible.  For
example, an individual may exist in which no direction changes are specified and the
bow could then overrun.  Correcting this requires a more complex evaluation function
which not only changes direction as direct by the individual but also when it must in
order to continue playing.

This  initial  analysis  of  the problem took under  an hour  but  never  made it  to  the
implementation stage.  Subsequent thought highlighted certain detrimental effects of
standard binary mutation.  A single change to the first  note in an individual may
dramatically change the meaning the remaining notes as the evaluator is forced to make
different decisions.  This simulation of the music in the evaluation function is another
problem.  To prevent the bow from overrunning much time must be spent backing up
and trying alternate direction choices.   Many evaluations must be made over the
duration of a genetic algorithm which would be slow as a result.

The alternative which was chosen for the final implementation modified the evaluation
function to remove the need for backups.  Now an infinitely long bow is simulated and
the amount of that bow required by an individual is measured.  Again scores could be
assigned according to the number of direction changes but also on how much bow
length required.  Better scores are given to individuals who come close to the actual
bow length.
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5.3  Algorithm  Success

This design is remarkably similar to that used for The Blues, only a evaluation class
and main program body are different.  The evaluation object is used to store the fixed
sections  of  music  and during evaluation  gaps  in  the  music  are  replaced with  the
information stored within the individual.  The main program creates other objects
including those controlling unity fitness, roulette wheel selection, single bit mutation,
and one point crossover all of which are already found within the toolkit.

In the end such a simple algorithm was not capable of coping with the rigours of a real
musical example and instead a small toy data set was used to test the algorithm.  Here it
is presented as above with note lengths on top and bowing rules on the bottom.

6 7 8 5 7 6 8 6 6 8 5 7 7 5 8

- - U U U - - - C - - - - D D

A target bow length of 30 was chosen for the test and the random initialisation phase
managed to produced a individual which required a bow of length only 33.  Because of
the simple generational model constant improvement was not guaranteed and by the
43rd generation the best individual was 39 units long.  However by the 71st generation
other avenues had been explored and the target of 30 had been reached.  Overall this
seems a reasonable result given the time taken on its development.

MUTANTS proved its worth with this algorithm, almost all of the code was already in
place.  Design considerations took about an hour and implementation around four
more.  Although the algorithm has not been attempted without the use of the toolkit I
would  anticipate  taking  slightly  longer  to  complete  all  the  work  essential  to  the
algorithm without it.   The saving in time is significant but not huge for someone
familiar with coding genetic algorithms.

More important is that with the toolkit fully implemented dozens of variations could be
made in almost no additional time.  Simple changes to the main program body would
give different fitness function, mutation and crossover operators.  Some are bound to
show better properties than others.  In a single day this problem could be taken from
scratch and numerous possible algorithms designed and implemented.  Each additional
specialised component written will give rise to many additional algorithms.
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6  Conclusions

6.1  Success  and  Failure

The aim in creating MUTANTS was to allow fast prototyping of any genetic algorithm.
However, the very first algorithm implemented went beyond the toolkits capabilities.
In its original design The Blues used two parent selection methods.  Every individual
was to be selected at least once for breeding, either by crossover or mutation.  The
element of chance was introduced with the roulette wheel selector which picked the
second parent in the case of a crossover.  Although the toolkit allows the selection
method to be changed this can only be done between reproductions, not during as
required in this algorithm.

Ada 95 allows object-oriented implementation and generic package instantiation, both
helpful in creating a flexible, extensible toolkit.  During the implementation of the
toolkit  Ada’s  strong  typing  system  hindered  some  previous  design  choices.   To
overcome this problem typecasting and unchecked access types (pointers) were used.
Although functional the toolkit depends on sensible use by the programmer because
Ada can no longer catch as many mistakes.  Also full advantage was not made of
default parameters available in the language.  If used these would have lessened the
burden of creating simple genetic algorithm by offering predetermined choice for some
components to novices.

Although limited in extent MUTANTS does provide a fast-prototyping toolkit for some
genetic algorithms.  Classic algorithms using binary vector representation with random
initialisation, mutation, and single point crossover controlled by the generational model
are easy to implement.   Both The Blues and Violin Music Notation fall  into this
category.  The Travelling Salesman Problem required different components - ordered
list representation and appropriate reproduction operators which are also provided.
Easier and faster implementation leaves more time for experimentation and the chance
of getting better results.  Writing new toolkit classes is simple, each class does only a
limited amount of work in the overall algorithm and once written classes can be reused
in other related projects.



6.2 Further Work

Only a few from the dozens of components suggested during initial research have been
implemented in the final toolkit.  If all these missing components were completed the
scope of the toolkit to help in the creation of good genetic algorithms would be greatly
enhanced.  Other languages might also be investigated to extend the toolkits application
areas even further.

The interaction of creator and selector class currently lacks the flexibility needed for all
algorithms.  Considering this problem is a good opportunity to look at the design of the
entire toolkit.  Another project should consider not just a single toolkit organisation but
try to find the best organisation.  Many algorithm techniques were consider for the
current design but no actual algorithms implementations were examined.  To create the
best  toolkit  many  algorithms  would  have  to  be  collected  and  dissected.   Their
requirements would then form the basis of the next toolkit design.

6.3  Summary

Genetic algorithms are based on systems seen to work in nature, systems that have
produced the diverse life around us.  In borrowing these ideas for searching solution
spaces many separate techniques have appeared.  Each combination of techniques
produces a different effect and it is difficult and slow to optimise the algorithms to a
particular problem.

MUTANTS the generic genetic algorithm toolkit  specifies a range of connectable
components.  An algorithm constructed using these components will be smaller and its
implementation will take less time.  With this extra time other possibilities presented by
the toolkit can be explored and every additional option explored gives a better chance of
finding the perfect algorithm.
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Appendix  A

Problem  Definition

Many problems in the world that we wish to solve are intractable, that is, it will take
more than polynomial time to find the optimal solution.  In most situations a sub-
optimal solution can be used instead and a range of techniques have been developed to
provide a near optimal solution in minimal time.

Genetic algorithms are one such technique.  They begin by generating a population of
potential solutions to the problem, encoded on genes.  Over a number of generations
new solutions are bred by crossing and mutating.  Solutions compete for space within
the population and those who cannot compete, die out.  The process of selection,
similar  to  natural  selection,  will  find  a  near  optimal  solution  after  a  number  of
generations.

There are five characteristic components in every genetic algorithm:

• a genetic representation for solutions to the problem
• a way to create an initial population of potential solutions
• an evaluation function that plays the role of the environment, rating solutions in

terms of their fitness
• genetic operators that alter the composition of children during reproduction
• values for various parameters that the genetic algorithm uses (population size,

probability of applying genetic operators)

Each component can be represented in a number of different ways and used in many
algorithms.  MUTANTS will provide a library of these genetic algorithm components.
Reuse  of  components  speeds  the  creation  of  an  algorithm giving  the  chance  for
experimentation to produce faster or better algorithms.



Appendix  B

Statement  of  Requirements

I. Customer Goals
A. The aim is to provide a library of components to simplify the

construction of genetic algorithms.
B. Components should be written in Ada 95.
C.  As a minimum the toolkit should be able to implement the classic

genetic algorithm with:
1. Bit string genetic representation,
2. Random binary initialisation,
3. Binary mutation and single point crossover genetic operator,
4. Generation replacement model.

D. In addition other techniques may be included, such as:
1. Vector, ordered list, number genetic representation,
2. Distributed and random search initialisation,
3. Other mutation, multi-point crossover, and inversion genetic

operators,
4. Steady-state, elitist, and without-duplicate models.

E. Other facilities which the toolkit should support:
1. User provided fitness values for potential solutions,
2. Family trees to relate all previous solutions,
3. Decision support which helps the user explore the solution

space,
4. Saving of genetic algorithm state to be recreated later.

F . The toolkit should be extensible so that components specific to a
particular genetic algorithm can be added by the programmer.

G. Components should be contained so the use of one does not require the
use of another.

H. Advanced techniques such as meta-genetic algorithms, adaptive
genetics, and interpolative genetics should be implementible using the
toolkit but need not be implemented.

I. The toolkit should be proved by creating two dissimilar genetic
algorithms using its components.

II. Technical Goals
A. Functional Requirements

1. Toolkit components should be divided into three classes
a) core toolkit - components required for classic genetic



algorithm with: binary string representation, random
binary initialisation, simple mutation and single point
crossover, generation replacement model

b) auxiliary toolkit - components to extend functionality of
genetic algorithms such as decision support

c) extended toolkit - components for other genetic algorithm
techniques

2. The core toolkit has highest priority, then the auxiliary toolkit
and finally the extended toolkit.

3. Component organisation must:
a) allow for the large number of possible genetic

algorithms,
b) be extensible with user defined components.
c) not restrict the user within components
d) be savable

4. Two dissimilar genetic algorithms should be created to show the
power and functionality of the toolkit.

5. A manual to explain the use of the toolkit should be made.
B. Non-functional Requirements

1. All components should be written in Ada 95.
2. Typical population sizes in genetic algorithms do not exceed a

few hundred but storing individuals permanently will increase
this by several orders of magnitude.

3. Deadlines:
a) The core toolkit and the first demonstration genetic

algorithm should be completed by the end of week 10,
b) The second demonstration genetic algorithm and the rest

of the project should be delivered by the end of week 20.
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Appendix  C

External  Specification

The toolkit will be composed of a collection of components organised in a number of
component hierarchies which describe their relationships.  The taxonomic hierarchy
groups components with similar tasks together, for example apples are under fruit.  The
functional hierarchy shows a components use of other components, for example apples
are under teeth.  The containment hierarchy shows a components storage of other
components, for example pips are under apples.  All components are also grouped as
part  of  the  core,  auxiliary,  or  extended  toolkit.   Components  are  presented  here
according to the taxonomic hierarchy with other hierarchies described in the text.

To create a genetic algorithm with this toolkit the programmer has to combine a number
of predefined components with a few that have been hand coded.  A simple example of
constructing a  genetic  algorithm using the toolkit  follows with component  names
emphasised.  A description of each component can be found later in the specification.

Classic  Genetic  Algorithm

A genetic algorithm is required to optimise a simple function.

f(x) = x.sin(10 .x) + 1.0

The problem is to find x from the range [-1, 2] which maximises the function f, ie to
find x0, such that

f(x0)  f(x) for all x  [-1, 2]

Two important decisions have to made about the genetic algorithm: how to represent
potential solutions, and which model will drive the genetic algorithm.  The use of
classic genetic algorithm techniques dictates our choices here.  The Generational Model
will define the order of actions within our algorithm and solutions will be represented
using a Bit Vector.  To store a solution to an accuracy of 6 decimal places will require
22 bits for each vector.

To decide which solutions are better an Evaluation function must take the bit vector
representation and return a number



E = -1.0 + v.3/(222 - 1)

where v is the bit vector interpreted as a positional code integer, this can be done using
Function Binary Bit Vector Evaluation.

The initial Population of  solutions  will  be  created  using Bit  Vector  Random
Initialisation and subsequent solutions will be bred using two Reproduction operators,
Bit  Random Single  Vector  Mutation and One Point  Vector Crossover.   Operator
distribution is 22% and 25% respectively with the remainder made up using Clone.

The  Toolkits

The core toolkit consists of those components required to implement the classic genetic
algorithm “The Blues” as shown in the report.

Generational  Model,  Count  Ending,  Bit  Representation,  Vector
Representation, Individual, Population, Bit Random Initialise, Vector
Random Initialise, Evaluation, Unity Fitness, Roulette Wheel Selector,
Clone  Reproduction,  Xor  Reproduction,  Position-based  Ordered
Mutation Reproduction, Order-based Ordered Crossover Reproduction,
Random

The auxiliary toolkit consists  of  those  components  which  extend  functionality  for
genetic algorithms such as decision support.

History

The extended toolkit consists of all components suitable for other genetic algorithms.

Component  Overview

The Model,  or  breeding technique,  component controls  the general  activity of  the
genetic algorithm.  A genetic algorithm consists of a single Model and subsidiary
components controlled by it.

The Ending component controls the length of time spent on the genetic algorithm.

Appendix C

38



The Representation component  encodes  a  possible  solutions.   Choosing  which
Representation is important to the design of the entire genetic algorithm.

The Individual component  is  a  particular  instance  of  a  possible  solution.   Each
Individual  is  associated  with  a  Representation  and  a  unique  identification  which
separates it from all other Individuals, even those with identical Representations.

The Population component is a bag of Individuals or a bag of Populations.  Operations
include all standard bag operations.

The Evaluation component converts a Representation to a numerical representation of
how good a solution it encodes.

The Fitness component converts and Individuals Evaluation into its fitness compared to
the rest of the Population.

The Selector component  chooses  an  Individual  from a  Population,  perhaps  using
information about that Individual and the rest of the Population.

The Reproduction component creates N new Individuals for the destination Population
from the source Population.

The History component  can store  an  association  of  Individuals,  their  parents  and
Reproduction components or Initialisers, and the Random settings.

The Random component generates pseudo random numbers starting from either a given
seed or the seed is taken from the time.

Model  Component

The Model,  or breeding technique, component controls the general  activity of the
genetic algorithm.  A genetic algorithm consists of a single Model and subsidiary
components  controlled  by  it.   Although  the  toolkit  provides  a  range  of  Model
components it is impossible to provide the variety which may be required.  Instead
unusual Models can be hand coded making use of subsidiary components from the
toolkit.

Functional: Ending, Individual, Population, Initialise, Evaluation, Fitness, Selector,
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Reproduction, History, Random

Containment:  Ending,  Population,  Initialise,  Evaluation,  Fitness,  Selector,
Reproduction, History, Random

Generational
The first Population is Initialised then a new Population of the same size is
created  using  the  Reproduction  operator.   The  current  Population  is  then
replaced and the new Population used for further breeding.

Generational Elitism
Generational but the first Individual of the new Population is a clone of the best
Individual of the previous Population.

Tournament
Generational but new Individuals are together with current Individuals.   N
Individuals are selected and the best is placed in the next generation.  This is
repeated until the next generation is full.

Steady State
The first Population is Initialised then N new Individuals are created using the
Reproduction operator.   These replace N individuals selected from the old
population.

Steady State Without Duplicates
Steady State but new Individuals must not have identical Representations to
current Individuals.

Preselection
Steady State but Individuals only replace inferior parents.

Ending  Component

The Ending component controls the length of time spent on the genetic algorithm.

Functional:

Containment: Ending

And
The Model continues until both given ending conditions are true.

Or
The Model continues until either of two ending conditions are true.

Count
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The Model is allowed N cycles before halting.
Time

The Model is allowed N seconds before halting.
Evaluation

The Model continues until a given Evaluation is reached.
Convergence

The Model continues until the population converges and no further change in
Evaluation is seen.

Representation  Component

The  Representation  component  encodes  a  possible  solutions.   Choosing  which
Representation is important to the design of the entire genetic algorithm.

Functional:

Containment: Representation

Bit
A single bit, 0 or 1.

Number
A single number with value between upper and lower bounds.

Vector
A sequence of elements with identical Representations.

Matrix
A matrix of elements with identical Representations.

Ordered
A particular permutation of elements draw from a particular Representation.

Tag
A integer position paired with another Representation, can be used to make a
tagged vector for use with the Inversion operator.

Individual  Component

The  Individual  component  is  a  particular  instance  of  a  possible  solution.   Each
Individual  is  associated  with  a  Representation  and  a  unique  identification  which
separates it from all other Individuals, even those with identical Representations.
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Functional: Representation

Containment: Representation

Population  Component

The Population component is a bag of Individuals or a bag of Populations.  Operations
include all standard bag operations.

Functional: Representation, Individual, Evaluation

Containment: Individual, Population

Initialise  Component

The Initialise component is used to create a number of new Individuals for a given
Population.  The Initialiser must be tailored to particular Representations.

Functional: Representation, Population, Evaluation, Selector, Reproduction, Random

Containment: Initialise, Reproduction

Random
Bit

Assigned 0 or 1 with equal probability.
Number

Assigned  a  number  between upper  and  lower  boundary  with  equal
probability.

Vector
Initialise each element separately.

Matrix
Initialise each element separately.

Ordered
Assign  one  of  the  possible  permutation  of  elements  with  equal
probability.

Tag Vector
Initialise each Tag separately and assign the correct integer position.

Search
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Initialise N Individuals at a time and pick the one with the highest Evaluation.
Selection between Individuals with equal fitness will be made randomly.

Distributed
Generated  Individuals  are  as  different  as  possible  from each  other.   This
technique must be tailored for each Representation.

Heuristic
Individuals  with  particular  characteristics  are  generated  using  heuristics
particular the problem.  This technique must be tailored to each Representation
and each problem.

Evaluation  Component

The Evaluation component converts a Representation to a numerical representation of
how  good  a  solution  it  encodes.   The  evaluation  is  dependent  on  both  the
Representation and the problem.  In most situations the Evaluation component will be
hand coded by the programmer.

Functional: Representation, Individual

Containment: Evaluation

Vector
Bit

Binary
Evaluation is equal to the positional code interpretation of the bit
vector.

Gray
Evaluation is equal to the gray code interpretation of the bit
vector.

Function
Apply a known function to the result of another Evaluation.

Fitness  Component

The Fitness component converts and Individuals Evaluation into its fitness compared to
the rest of the Population.

Functional: Individual, Population
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Containment:

Unity
Fitness is equal to evaluation.

Windowing
Fitness is equal to the amount an Individual’s Evaluation exceeds the minimum
evaluation within the Population minus some known guard value.

Linear Normalisation
Order Individuals by decreasing Evaluation.  The best Individual is given a
known fitness and thereafter the fitness is decreased by a constant amount.

Linear Scaling
Fitness is equal to (a * evaluation + b) where a and b are normally selected so
that the average fitness is mapped to itself and the best fitness is increased by
some desired multiple.

Sigma Truncation
Fitness is equal to (evaluation + average evaluation - c * s) where c is chosen
from around 1 to 5 and s is the Population’s standard deviation.  Negative
fitness values are set to zero.

Power Law Scaling

Fitness is equal to (evaluation k) where k is a problem dependent value close to

1.

Selector  Component

The  Selector  component  chooses  an  Individual  from a  Population,  perhaps  using
information about that Individual and the rest of the Population.

Functional: Individual, Population, Fitness, Random

Containment:

Best
Individual with the highest fitness within the Population is selected.  Selection
between Individuals with equal fitness will be made randomly.

Worst
Individual with the lowest fitness within the Population is selected.  Selection
between Individuals with equal fitness will be made randomly.

Random
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Each Individual has an equal probability of being selected.
Roulette Wheel

Each Individual has a probability of being selected proportional to its fitness
divided by the average fitness of the Population.

Anti Roulette Wheel
Each Individual has a probability of being selected inversely proportional to its
fitness divided by the average fitness of the Population.

Stochastic
The first Individual is chosen using a roulette wheel and the subsequent (N - 1)
Individuals taken evenly from the entire population, then the cycle repeats.

Expected Value
Associated with each Individual is a count equal to that Individual’s fitness
divided by the average fitness of the Population.  Whenever an Individual is
selected  to  reproduce,  using  another  Selector  component,  its  count  is
decremented by one.  When a count falls below zero the Individual is no long
available for further selection.

Similarity
The  Individual  selected  is  that  closest  to  the  given  Individual.   Selection
between equally similar Individuals will be made randomly.  This technique
must be tailored to each Representation and each problem.

Reproduction  Component

The Reproduction component creates N new Individuals for the destination Population
from the source Population.  Reproduction components must be tailored to a each
Representation and each Problem.

Functional: Representation, Individual, Population, Selector, Random

Containment: Selector, Reproduction

Clone
Individual’s Representation is an exact copy of the parent’s Representation.

Xor
Individuals are created with either one Reproduction component or another but
not both using the given probability distribution.

And
Individuals  are  created  with  one  Reproduction  followed  by  another.   The
second  Reproduction  component  may  require  several  Individuals  to  be
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generated by the first component.
Or

Individuals are created with either of two Reproduction components or both
using the given probabilities.  The second Reproduction component may require
several Individuals to be generated by the first component.

Inversion
Tag Vector

Biased
Individual’s  Representation  is  the  same  as  the  parent’s
Representation except that the order of a sequence of elements
between two random points has been reversed.

Unbiased
Individual’s  Representation  is  the  same  as  the  parent’s
Representation except that the order of a sequence of element
between a random point and a randomly selected end has been
reversed.

Mutation
Bit

Inverts value.
Number

Random
Assign a number between upper and lower boundary with equal
probability.

Creep
Modify  the  number  by  either  adding  or  subtracting  a  know
value.

Vector
Single

Each element  has  an  equal  probability  of  being chosen and
mutated.

Deletion
A  randomly  chosen  element  is  deleted.   Only  suitable  for
variable length vectors.

Addition
Duplication

A  randomly  chosen  element  is  duplicated  with  the
duplicate placed next to the original.  Only suitable for
variable length vectors.

Initialised
A newly initialised element is inserted into the list.  Only
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suitable for variable length vectors.
Related

A pair of adjacent elements is randomly chosen and a
new element related to each is inserted between them.
This must be tailored to each Representation and each
problem.  Only suitable for variable length vectors.

Tag Vector
Cut

Parent vector is cut at a random point.  Only suitable for messy
genetic algorithms.

Single
Each element has an equal probability of being chosen and  the
non-position value mutated.

Ordered
Order-based

Two randomly selected elements are swapped.
Position-based

One randomly selected element is placed before another.
Scramble Sublist

Select a sublist of size N and randomly permute it.
Random Hill Climb

N new Representations are created using a Mutation component and the
one with the best Evaluation is chosen.  Selection between Individuals
with equal evaluation will be made randomly.

Crossover
Number

Average
Assign the average of two parent numbers.

Vector
One Point

A crosspoint is selected at random and the tail of each parent is
swapped with the other parent.

Two Point
Two  crosspoints  are  selected  at  random  and  the  elements
between are swapped with the other parent.  Initial and final
elements of the vector are considered adjacent.

Multi Point
N pairs of crosspoints are selected at random and the elements
between are swapped with the other parent.   Initial and final
elements of the vector are considered adjacent.
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Segmented
Multi Point Crossover in which the number of segments can
vary.  For each element there is a probability that the current
segment will end and a new one begin.

Uniform
Each element is taken from either parent with equal probability.

Shuffle
Randomly permute both parent vectors, perform a Crossover,
and reverse permute them.

Traverse
Apply  given  Crossover  to  each  pair  of  elements  in  parent
vectors.

Tag Vector
Splice

Parent’s representations are joined end to end.  Only suitable for
messy genetic algorithms.

Ordered
Position-based

A set  of  positions is  randomly selected and the positions of
elements selected in one parent is imposed on the corresponding
elements in the other parent.

Order-based
A set of positions is randomly selected and the order of elements
in  the  selected  positions  in  one  parent  is  imposed  on  the
corresponding elements in the other parent.

Repair
The parents representation is corrected so it no longer violates constraints made
on the solution.

History  Component

The History  component  can store  an association of  Individuals,  their  parents  and
Reproduction components or Initialisers, and the Random settings.

Functional: Individual, Reproduction, Initialise, Random

Containment: Individual
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Random  Component

The Random component generates pseudo random numbers starting from either a given
seed or the seed is taken from the time.

Functional:

Containment:
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Appendix  D

Class  Design

Ending

Model

Random

Selector

History

Creator

Individual

PopulationFitness

Representation

Evaluation

Class design information is formatted as -

method: arguments > result:

Object creators are refered to as ctor methods.  A backslash before an arguement
indicates the value is passed by value rather than by reference.  Arguements enclosed in
squared  brackets  symbolise  an  array  of  elements  rather  than  a  single  value.   An
underlined method indicates that the child classes may override this method and an
underlined reference arguement means the value of the object may change.



Model  Class

class Model:
ctor: Creator, \size > Model
ctor: Creator, \size, Random > Model
ctor: Istream > Model
print: Model, Ostream
run: Model, Evaluation, Fitness, Selector, Creator, Ending
run: Model, Evaluation, Fitness, Selector, Creator, Ending, History
population: Model > Population

class Generational_Model:
print: Model, Ostream
run: Generational_Model, Evaluation, Fitness, Selector, Creator, Ending
run: Generational_Model, Evaluation, Fitness, Selector, Creator, Ending, History
population: Generational_Model > Population

class GenerationalElitism_Model:
print: Model, Ostream
run: GenerationalElitism_Model, Evaluation, Fitness, Selector, Creator, Ending
run: GenerationalElitism_Model, Evaluation, Fitness, Selector, Creator, Ending,

History
population: GenerationalElitism_Model > Population

class GenerationalTournament_Model:
print: Model, Ostream
run: GenerationalTournament_Model, Evaluation, Fitness, Selector, Creator, Ending,

\tournament_size
run: GenerationalTournament_Model, Evaluation, Fitness, Selector, Creator, Ending,

History, \tournament_size
population: GenerationalTournament_Model > Population

class SteadyState_Model:
print: Model, Ostream
run: SteadyState_Model, Evaluation, Fitness, Selector, Creator, Ending, \brood_size
run: SteadyState_Model, Evaluation, Fitness, Selector, Creator, Ending, History,

\brood_size
population: SteadyState_Model > Population

class SteadyStateNoDuplicates_Model:
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print: Model, Ostream
run: SteadyStateNoDuplicates_Model, Evaluation, Fitness, Selector, Creator, Ending,

\brood_size
run: SteadyStateNoDuplicates_Model, Evaluation, Fitness, Selector, Creator, Ending,

History, \brood_size
population: SteadyStateNoDuplicates_Model > Population

class SteadyStatePreselection_Model:
print: Model, Ostream
run: SteadyStatePreselection_Model, Evaluation, Fitness, Selector, Creator, Ending,

\brood_size
run: SteadyStatePreselection_Model, Evaluation, Fitness, Selector, Creator, Ending,

History, \brood_size
population: SteadyStatePreselection_Model > Population

Ending  Class

class Ending:
ctor: > Ending
print: Ending, Ostream
end: Ending > \end

class And_Ending:
ctor: Ending, Ending > And_Ending
print: And_Ending, Ostream
end: And_Ending > \end

class Or_Ending:
ctor: Ending, Ending > Or_Ending
print: Or_Ending, Ostream
end: Or_Ending > \end

class Count_Ending:
ctor: \count, \decrement > Count_Ending
print: Count_Ending, Ostream
end: Count_Ending > \end

class Time_Ending:
ctor: \duration > Time_Ending
print: Time_Ending, Ostream
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end: Time_Ending > \end

class Evaluation_Ending:
ctor: Model, Evaluation > Evaluation_Ending
print: Evaluation_Ending, Ostream
end: Evaluation_Ending > \end

class Convergence_Ending:
ctor: Model, Evaluation, \improvement, \period > Convergence_Ending
print: Convergence_Ending, Ostream
end: Convergence_Ending > \end

Representation  Class

class Representation:
ctor: Istream > Representation
print: Representation, Ostream

class Bit_Representation:
ctor: Bit > Bit_Representation
ctor: Istream > Bit_Representation
print: Bit_Representation, Ostream
get: Bit_Representation > Bit
set: Bit_Representation, Bit

class Number_Representation:
ctor: Number > Number_Representation
ctor: Istream > Number_Representation
print: Number_Representation, Ostream
get: Number_Representation > Number
set: Number_Representation, Number

class Vector_Representation:
ctor: [Representation] > Vector_Representation
ctor: Istream > Vector_Representation
print: Vector_Representation, Ostream
get: Vector_Representation, \index > Representation
set: Vector_Representation, \index, Representation
length: Vector_Representation > \length
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class Tagged_Vector_Representation:
ctor: [Representation] > Tagged_Vector_Representation
ctor: Istream > Tagged_Vector_Representation
print: Tagged_Vector_Representation, Ostream
get: Tagged_Vector_Representation, \index > Representation
set: Tagged_Vector_Representation, \index, Representation
tagged_get: Tagged_Vector_Representation, \index > Representation
tagged_set: Tagged_Vector_Representation, \index, Representation
length: Tagged_Vector_Representation > \length

class Matrix_Representation:
ctor: [[Representation]] > Matrix_Representation
ctor: Istream > Matrix_Representation
print: Matrix_Representation, Ostream
get: Matrix_Representation, \x, \y > Representation
set: Matrix_Representation, \x, \y, Representation
width: Matrix_Representation > \width
height: Matrix_Representation > \height

class Ordered_Representation:
ctor: [Representation] > Ordered_Representation
ctor: Istream > Ordered_Representation
print: Ordered_Representation, Ostream
get: Ordered_Representation, \index > Representation
set: Ordered_Representation, \index, Representation
length: Ordered_Representation > \length

Individual  Class

class Individual:
ctor: Representation > Individual
ctor: Istream > Individual
print: Individual, Ostream
representation: Individual > Representation
evaluation: Individual, \evaluation
evaluation: > \evaluation
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Evaluation  Class

class Evaluation:
ctor: > Evaluation
ctor: Istream > Evaluation
print: Evaluation, Ostream
evaluate: Evaluation, Representation > \evaluation

class Function_Evaluation:
ctor: \function, Evaluation > Function_Evaluation
ctor: Istream > Function_Evaluation
print: Function_Evaluation, Ostream
evaluate: Function_Evaluation, Representation > \evaluation

class Binary_Bit_Vector_Evaluation:
ctor: > Binary_Bit_Vector_Evaluation
ctor: Istream, Binary_Bit_Vector_Evaluation
print: Binary_Bit_Vector_Evaluation, Ostream
evaluate: Binary_Bit_Vector_Evaluation, Bit_Vector_Representation > \evaluation

class Gray_Bit_Vector_Evaluation:
ctor: > Gray_Bit_Vector_Evaluation
ctor: Istream, Gray_Bit_Vector_Evaluation
print: Gray_Bit_Vector_Evaluation, Ostream
evaluate: Gray_Bit_Vector_Evaluation, Bit_Vector_Representation > \evaluation

Population  Class

class Population:
ctor: > Population
ctor: [Individual] > Population
ctor: Istream > Population
print: Population, Ostream
add: Population, Individual
sub: Population, Individual
length: Population > \length
iterator: Population > PopulationIterator

class PopulationIterator:
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ctor: Population > PopulationIterator
ctor: Istream > PopulationIterator
print: PopulationIterator, Ostream
next: PopulationIterator > \more, Individual, \fitness

Fitness  Class

class Fitness:
ctor: > Fitness
ctor: Istream > Fitness
print: Fitness, Ostream
attach: Fitness, Population
fitness: Fitness, Individual > \fitness
length: Fitness > \size
iterator: Fitness > FitnessIterator

class FitnessIterator:
ctor: Fitness > FitnessIterator
ctor: Istream > FitnessIterator
print: FitnessIterator, Ostream
next: FitnessIterator > \more, Individual, \fitness

class Unity_Fitness:
ctor: > Unity_Fitness
ctor: Istream > Unity_Fitness
print: Unity_Fitness, Ostream
attach: Unity_Fitness, Population
fitness: Unity_Fitness, Individual > \fitness
length: Unity_Fitness > \size
iterator: Unity_Fitness > Unity_FitnessIterator

class Unity_FitnessIterator:
ctor: Unity_Fitness > Unity_FitnessIterator
ctor: Istream > Unity_FitnessIterator
print: Unity_FitnessIterator, Ostream
next: Unity_FitnessIterator > \more, Individual, \fitness

class Window_Fitness:
ctor: > Window_Fitness
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ctor: Istream > Window_Fitness
print: Window_Fitness, Ostream
attach: Window_Fitness, Population, \guard
fitness: Window_Fitness, Individual > \fitness
length: Window_Fitness > \size
iterator: Window_Fitness > Window_FitnessIterator

class Window_FitnessIterator:
ctor: Window_Fitness > Window_FitnessIterator
ctor: Istream > Window_FitnessIterator
print: Window_FitnessIterator, Ostream
next: Window_FitnessIterator > \more, Individual, \fitness

class LinearNormalisation_Fitness:
ctor: > LinearNormalisation_Fitness
ctor: Istream > LinearNormalisation_Fitness
print: LinearNormalisation_Fitness, Ostream
attach: LinearNormalisation_Fitness, Population, \maximum, \decrement
fitness: LinearNormalisation_Fitness, Individual > \fitness
length: LinearNormalisation_Fitness > \size
iterator: LinearNormalisation_Fitness > LinearNormalisation_FitnessIterator

class LinearNormalisation_FitnessIterator:
ctor: LinearNormalisation_Fitness > LinearNormalisation_FitnessIterator
ctor: Istream > LinearNormalisation_FitnessIterator
print: LinearNormalisation_FitnessIterator, Ostream
next: LinearNormalisation_FitnessIterator > \more, Individual, \fitness

class LinearScaling_Fitness:
ctor: > LinearNormalisation_Fitness
ctor: Istream > LinearScaling_Fitness
print: LinearScaling_Fitness, Ostream
attach: LinearScaling_Fitness, Population, \a, \b
fitness: LinearScaling_Fitness, Individual > \fitness
length: LinearScaling_Fitness > \size
iterator: LinearScaling_Fitness > LinearScaling_FitnessIterator

class LinearScaling_FitnessIterator:
ctor: LinearScaling_Fitness > LinearScaling_FitnessIterator
ctor: Istream > LinearScaling_FitnessIterator
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print: LinearScaling_FitnessIterator, Ostream
next: LinearScaling_FitnessIterator > \more, Individual, \fitness

class SigmaTruncation_Fitness:
ctor: > SigmaTruncation_Fitness
ctor: Istream > SigmaTruncation_Fitness
print: SigmaTruncation_Fitness, Ostream
attach: SigmaTruncation_Fitness, Population, \c
fitness: SigmaTruncation_Fitness, Individual > \fitness
length: SigmaTruncation_Fitness > \size
iterator: SigmaTruncation_Fitness > SigmaTruncation_FitnessIterator

class SigmaTruncation_FitnessIterator:
ctor: SigmaTruncation_Fitness > SigmaTruncation_FitnessIterator
ctor: Istream > SigmaTruncation_FitnessIterator
print: SigmaTruncation_FitnessIterator, Ostream
next: SigmaTruncation_FitnessIterator > \more, Individual, \fitness

class PowerLawScaling_Fitness:
ctor: > PowerLawScaling_Fitness
ctor: Istream > PowerLawScaling_Fitness
print: PowerLawScaling_Fitness, Ostream
attach: PowerLawScaling_Fitness, Population, \k
fitness: PowerLawScaling_Fitness, Individual > \fitness
length: PowerLawScaling_Fitness > \size
iterator: PowerLawScaling_Fitness > PowerLawScaling_FitnessIterator

class PowerLawScaling_FitnessIterator:
ctor: PowerLawScaling_Fitness > PowerLawScaling_FitnessIterator
ctor: Istream > PowerLawScaling_FitnessIterator
print: PowerLawScaling_FitnessIterator, Ostream
next: PowerLawScaling_FitnessIterator > \more, Individual, \fitness

Selector  Class

class Selector:
ctor: > Selector
ctor: Istream > Selector
print: Selector, Ostream
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attach: Selector, Fitness
select: Selector > Individual
unselect: Selector, Individual

class Best_Selector:
ctor: > Best_Selector
ctor: Istream > Best_Selector
print: Best_Selector, Ostream
attach: Best_Selector, Fitness
select: Best_Selector > Individual
unselect: Best_Selector, Individual

class Worst_Selector:
ctor: > Worst_Selector
ctor: Istream > Best_Selector
print: Worst_Selector, Ostream
attach: Worst_Selector, Fitness
select: Worst_Selector > Individual
unselect: Worst_Selector, Individual

class Random_Selector:
ctor: Random > Random_Selector
ctor: Istream > Random_Selector
print: Random_Selector, Ostream
attach: Random_Selector, Fitness
select: Random_Selector > Individual
unselect: Random_Selector, Individual

class RouletteWheel_Selector:
ctor: Random > RouletteWheel_Selector
ctor: Istream > RouletteWheel_Selector
print: RouletteWheel_Selector, Ostream
attach: RouletteWheel_Selector, Fitness
select: RouletteWheel_Selector > Individual
unselect: RouletteWheel_Selector, Individual

class AntiRouletteWheel_Selector:
ctor: Random > AntiRouletteWheel_Selector
ctor: Istream > AntiRouletteWheel_Selector
print: RouletteWheel_Selector, Ostream
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attach: AntiRouletteWheel_Selector, Fitness
select: AntiRouletteWheel_Selector > Individual
unselect: AntiRouletteWheel_Selector, Individual

class Stochastic_Selector:
ctor: Random > Stochastic_Selector
ctor: Istream > Stochastic_Selector
print: Stochastic_Selector, Ostream
attach: Stochastic_Selector, Fitness, \cycle
select: Stochastic_Selector > Individual
unselect: Stochastic_Selector, Individual

class ExpectedValue_Selector:
ctor: Random > ExpectedValue_Selector
ctor: Istream > ExpectedValue_Selector
print: ExpectedValue_Selector, Ostream
attach: ExpectedValue_Selector, Fitness, \cycle
select: ExpectedValue_Selector > Individual
unselect: ExpectedValue_Selector, Individual

class Similarity_Selector:
ctor: Random > Similarity_Selector
ctor: Istream > Similarity_Selector
print: Similarity_Selector, Ostream
attach: Similarity_Selector, Fitness, Individual
select: Similarity_Selector > Individual
unselect: Similarity_Selector, Individual

Creator  Class

class Creator:
ctor: > Creator
create: Creator, Population, \size
create: Creator, History, Population, \size
selector: Creator, Selector > \required
private Creator:
parents: Creator > \number
breed: Creator, [Representation], Population > \succeed
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class And_Creator:
ctor: Creator, Creator > And_Creator
create: And_Creator, Population, \size
create: And_Creator, History, Population, \size
selector: And_Creator, Selector > \required
private And_Creator:
parents: And_Creator > \number
breed: And_Creator, [Representation], Population > \succeed

class Or_Creator:
ctor: Creator, \probability, Creator, \probability > Or_Creator
create: Or_Creator, Population, \size
create: Or_Creator, History, Population, \size
selector: Or_Creator, Selector > \required
private Or_Creator:
parents: Or_Creator > \number
breed: Or_Creator, [Representation], Population > \succeed

class Xor_Creator:
ctor: Creator, \weight, Creator, \weight > Xor_Creator
create: Xor_Creator, Population, \size
create: Xor_Creator, History, Population, \size
selector: Xor_Creator, Selector > \required
private Xor_Creator:
parents: Xor_Creator > \number
breed: Xor_Creator, [Representation], Population > \succeed

class Initialise:
ctor: > Initialise
create: Initialise, Population, \size
create: Initialise, History, Population, \size
private Initialise:
parents: Initialise > \number
breed: Initialise, [Representation], Population > \succeed

class Random_Initialise:
ctor: Random > Random_Initialise
create: Random_Initialise, Population, \size
create: Random_Initialise, History, Population, \size
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class Bit_Random_Initialise:
ctor: Random > Bit_Random_Initialise
create: Bit_Random_Initialise, Population, \size
create: Bit_Random_Initialise, History, Population, \size

class Number_Random_Initialise:
ctor: Random, \lower, \upper > Number_Random_Initialise
create: Number_Random_Initialise Population, \size
create: Number_Random_Initialise, History, Population, \size

class Vector_Random_Initialise:
ctor: Random, Initialise > Vector_Random_Initialise
create: Vector_Random_Initialise, Population, \size
create: Vector_Random_Initialise, History, Population, \size

class Tagged_Vector_Random_Initialise:
ctor: Random, Initialise > Tagged_Vector_Random_Initialise
create: Tagged_Vector_Random_Initialise, Population, \size
create: Tagged_Vector_Random_Initialise, History, Population, \size

class Matrix_Random_Initialise:
ctor: Random, Initialise > Vector_Random_Initialise
create: Matrix_Random_Initialise, Population, \size
create: Matrix_Random_Initialise, History, Population, \size

class Ordered_Random_Initialise:
ctor: Random, Initialise > Ordered_Random_Initialise
create: Ordered_Random_Initialise, Population, \size
create: Ordered_Random_Initialise, History, Population, \size

class Search_Initialise:
ctor: Creator, \n > Search_Initialise
create: Search_Initialise, Population, \size
create: Search_Initialise, History, Population, \size
private Search_Initialise:
parents: Search_Initialise > \number
breed: Search_Initialise, [Representation], Population > \succeed

class Distributed_Initialise:
ctor: Random > Search_Initialise
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create: Distributed_Initialise, Population, \size
create: Distributed_Initialise, History, Population, \size
class Heuristic_Initialise:
ctor: Random > Heuristic_Initialise
create: Heuristic_Initialise, Population, \size
create: Heuristic_Initialise, History, Population, \size

class Reproduction:
ctor: > Reproduction
create: Reproduction, Population, \size
create: Reproduction, History, Population, \size
selector: Reproduction, Selector > \required

class Clone_Reproduction:
ctor: > Clone_Reproduction
create: Clone_Reproduction, Population, \size
create: Clone_Reproduction, History, Population, \size
private Clone_Reproduction:
parents: Clone_Reproduction > \number
breed: Clone_Reproduction, [Representation], Population > \succeed

class Inversion_Reproduction:
ctor: Random, \portion > Inversion_Reproduction
private Inversion_Reproduction:
parents: Inversion_Reproduction > \number

class Biased_Inversion_Reproduction:
ctor: Random, \portion > Biased_Inversion_Reproduction
create: Biased_Inversion_Reproduction, Population, \size
create: Biased_Inversion_Reproduction, History, Population, \size
private Inversion_Reproduction:
breed: Biased_Inversion_Reproduction, [Representation], Population > \succeed

class Unbiased_Inversion_Reproduction:
ctor: Random, \portion > Unbiased_Inversion_Reproduction
create: Unbiased_Inversion_Reproduction, Population, \size
create: Unbiased_Inversion_Reproduction, History, Population, \size
private Inversion_Reproduction:
breed: Unbiased_Inversion_Reproduction, [Representation], Population > \succeed
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class Mutation_Reproduction:
ctor: Random > Mutation_Reproduction
private Mutation_Reproduction:
parents: Mutation_Reproduction > \number

class Bit_Mutation_Reproduction:
ctor: Random > Bit_Mutation_Reproduction
create: Bit_Mutation_Reproduction, Population, \size
create: Bit_Mutation_Reproduction, History, Population, \size
private Bit_Mutation_Reproduction:
breed: Bit_Mutation_Reproduction, [Bit_Representation], Population > \succeed

class Number_Mutation_Reproduction:
ctor: Random > Number_Mutation_Reproduction

class Random_Number_Mutation_Reproduction:
ctor: Random, \lower, \upper > Random_Number_Mutation_Reproduction
create: Random_Number_Mutation_Reproduction, Population, \size
create: Random_Number_Mutation_Reproduction, History, Population, \size
private Random_Number_Mutation_Reproduction:
breed: Random_Number_Mutation_Reproduction, [Number_Representation],

Population > \succeed

class Creep_Number_Mutation_Reproduction:
ctor: Random, \lower, \upper, \creep > Creep_Number_Mutation_Reproduction
create: Creep_Number_Mutation_Reproduction, Population, \size
create: Creep_Number_Mutation_Reproduction, History, Population, \size
private Creep_Number_Mutation_Reproduction:
breed: Creep_Number_Mutation_Reproduction, [Number_Representation], Population 

> \succeed

class Vector_Mutation_Reproduction:
ctor: Random > Vector_Mutation_Reproduction

class Single_Vector_Mutation_Reproduction:
ctor: Random, Mutation_Reproduction > Single_Vector_Mutation_Reproduction
create: Single_Vector_Mutation_Reproduction, Population, \size
create: Single_Vector_Mutation_Reproduction, History, Population, \size
private Single_Vector_Mutation_Reproduction:
breed: Single_Vector_Mutation_Reproduction, [Vector_Representation], Population >
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\succeed

class Deletion_Vector_Mutation_Reproduction:
ctor: Random > Deletion_Vector_Mutation_Reproduction
create: Deletion_Vector_Mutation_Reproduction, Population, \size
create: Deletion_Vector_Mutation_Reproduction, History, Population, \size
private Deletion_Vector_Mutation_Reproduction:
breed: Deletion_Vector_Mutation_Reproduction, [Vector_Representation], Population 

> \succeed

class Addition_Vector_Mutation_Reproduction:
ctor: Random > Addition_Vector_Mutation_Reproduction
create: Addition_Vector_Mutation_Reproduction, Population, \size
create: Addition_Vector_Mutation_Reproduction, History, Population, \size

class Duplication_Addition_Vector_Mutation_Reproduction:
ctor: Random > Duplication_Addition_Vector_Mutation_Reproduction
create: Duplication_Addition_Vector_Mutation_Reproduction, Population, \size
create: Duplication_Addition_Vector_Mutation_Reproduction, History, Population,

\size
private Duplication_Addition_Vector_Mutation_Reproduction:
breed: Duplication_Addition_Vector_Mutation_Reproduction, [Vector_Representation],

Population > \succeed

class Initialised_Addition_Vector_Mutation_Reproduction:
ctor: Random, Initialise > Initialised_Addition_Vector_Mutation_Reproduction
create: Initialised_Addition_Vector_Mutation_Reproduction, Population, \size
create: Initialised_Addition_Vector_Mutation_Reproduction, History, Population, \size
private Initialised_Addition_Vector_Mutation_Reproduction:
breed: Initialised_Addition_Vector_Mutation_Reproduction, [Vector_Representation],

Population > \succeed

class Related_Addition_Vector_Mutation_Reproduction:
ctor: Random > Related_Addition_Vector_Mutation_Reproduction
create: Related_Addition_Vector_Mutation_Reproduction, Population, \size
create: Related_Addition_Vector_Mutation_Reproduction, History, Population, \size
private Related_Addition_Vector_Mutation_Reproduction:
breed: Related_Addition_Vector_Mutation_Reproduction, [Vector_Representation],

Population > \succeed
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class Cut_Vector_Mutation_Reproduction:
ctor: Random > Cut_Vector_Mutation_Reproduction
create: Cut_Mutation_Reproduction, Population, \size
create: Cut_Mutation_Reproduction, History, Population, \size
private Cut_Vector_Mutation_Reproduction:
breed: Cut_Vector_Mutation_Reproduction, [Vector_Representation], Population >

\succeed

class Ordered_Mutation_Reproduction:
ctor: Random > Ordered_Mutation_Reproduction

class OrderBased_Ordered_Mutation_Reproduction:
ctor: Random > OrderBased_Ordered_Mutation_Reproduction
create: OrderBased_Ordered_Mutation_Reproduction, Population, \size
create: OrderBased_Ordered_Mutation_Reproduction, History, Population, \size
private OrderBased_Ordered_Mutation_Reproduction:
breed: OrderBased_Ordered_Mutation_Reproduction, [Ordered_Representation],

Population > \succeed

class PositionBased_Ordered_Mutation_Reproduction:
ctor: Random > PositionBased_Ordered_Mutation_Reproduction
create: PositionBased_Ordered_Mutation_Reproduction, Population, \size
create: PositionBased_Ordered_Mutation_Reproduction, History, Population, \size
private PositionBased_Ordered_Mutation_Reproduction:
breed: PositionBased_Ordered_Mutation_Reproduction, [Ordered_Representation],

Population > \succeed

class ScrambleSublist_Ordered_Mutation_Reproduction:
ctor: Random > ScrambleSublist_Ordered_Mutation_Reproduction
create: ScrambleSublist_Ordered_Mutation_Reproduction, Population, \size
create: ScrambleSublist_Ordered_Mutation_Reproduction, History, Population, \size
private ScrambleSublist_Ordered_Mutation_Reproduction:
breed: ScrambleSublist_Ordered_Mutation_Reproduction, [Ordered_Representation],

Population > \succeed

class RandomHillClimb_Mutation_Reproduction:
ctor: Random, Mutation > RandomHillClimb_Mutation_Reproduction
create: RandomHillClimb_Mutation_Reproduction, Population, \size
create: RandomHillClimb_Mutation_Reproduction, History, Population, \size
private RandomHillClimb_Mutation_Reproduction:
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breed: RandomHillClimb_Mutation_Reproduction, [Representation], Population >
\succeed

class Crossover_Reproduction:
ctor: Random > Crossover_Reproduction
create: Crossover_Reproduction, Population, \size
create: Crossover_Reproduction, History, Population, \size
private Crossover_Reproduction:
parents: Crossover_Reproduction > \number

class Number_Crossover_Reproduction:
ctor: Random > Number_Crossover_Reproduction

class Average_Number_Crossover_Reproduction:
ctor: Random > Average_Number_Crossover_Reproduction
create: Average_Number_Crossover_Reproduction, Population, \size
create: Average_Number_Crossover_Reproduction, History, Population, \size
private Average_Number_Crossover_Reproduction:
breed: Average_Number_Crossover_Reproduction, [Number_Representation],

Population > \succeed

class Vector_Crossover_Reproduction:
ctor: Random > Vector_Crossover_Reproduction

class OnePoint_Vector_Crossover_Reproduction:
ctor: Random > OnePoint_Vector_Crossover_Reproduction
create: OnePoint_Vector_Crossover_Reproduction, Population, \size
create: OnePoint_Vector_Crossover_Reproduction, History, Population, \size
private OnePoint_Vector_Crossover_Reproduction:
breed: OnePoint_Vector_Crossover_Reproduction, [Vector_Representation],

Population > \succeed

class MultiPoint_Vector_Crossover_Reproduction:
ctor: Random, \n > MultiPoint_Vector_Crossover_Reproduction
create: MultiPoint_Vector_Crossover_Reproduction, Population, \size
create: MultiPoint_Vector_Crossover_Reproduction, History, Population, \size
private MultiPoint_Vector_Crossover_Reproduction:
breed: MultiPoint_Vector_Crossover_Reproduction, [Vector_Representation],

Population > \succeed
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class Segmented_Vector_Crossover_Reproduction:
ctor: Random, \probability > Segmented_Vector_Crossover_Reproduction
create: Segmented_Vector_Crossover_Reproduction, Population, \size
create: Segmented_Vector_Crossover_Reproduction, History, Population, \size
private Segmented_Vector_Crossover_Reproduction:
breed: Segmented_Vector_Crossover_Reproduction, [Vector_Representation],

Population > \succeed

class Uniform_Vector_Crossover_Reproduction:
ctor: Random > Uniform_Vector_Crossover_Reproduction
create: Uniform_Vector_Crossover_Reproduction, Population, \size
create: Uniform_Vector_Crossover_Reproduction, History, Population, \size
private Uniform_Vector_Crossover_Reproduction:
breed: Uniform_Vector_Crossover_Reproduction, [Vector_Representation],

Population > \succeed

class Shuffle_Vector_Crossover_Reproduction:
ctor: Random, Crossover > Shuffle_Vector_Crossover_Reproduction
create: Shuffle_Vector_Crossover_Reproduction, Population, \size
create: Shuffle_Vector_Crossover_Reproduction, History, Population, \size
private Shuffle_Vector_Crossover_Reproduction:
breed: Shuffle_Vector_Crossover_Reproduction, [Vector_Representation], Population 

> \succeed

class Traverse_Vector_Crossover_Reproduction:
ctor: Random, Crossover > Traverse_Vector_Crossover_Reproduction
create: Traverse_Vector_Crossover_Reproduction, Population, \size
create: Traverse_Vector_Crossover_Reproduction, History, Population, \size
private Traverse_Vector_Crossover_Reproduction:
breed: Traverse_Vector_Crossover_Reproduction, [Vector_Representation],

Population > \succeed

class Splice_Vector_Crossover_Reproduction:
ctor: Random, Crossover > Splice_Vector_Crossover_Reproduction
create: Splice_Vector_Crossover_Reproduction, Population, \size
create: Splice_Vector_Crossover_Reproduction, History, Population, \size
private Splice_Vector_Crossover_Reproduction:
breed: Splice_Vector_Crossover_Reproduction, [Vector_Representation], Population >

\succeed
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class Ordered_Crossover_Reproduction:
ctor: Random > Ordered_Crossover_Reproduction

class PositionBased_Ordered_Crossover_Reproduction:
ctor: Random > PositionBased_Ordered_Crossover_Reproduction
create: PositionBased_Ordered_Crossover_Reproduction, Population, \size
create: PositionBased_Ordered_Crossover_Reproduction, History, Population, \size
private PositionBased_Ordered_Crossover_Reproduction:
breed: PositionBased_Ordered_Crossover_Reproduction, [Ordered_Representation],

Population > \succeed

class OrderBased_Ordered_Crossover_Reproduction:
ctor: Random > OrderBased_Ordered_Crossover_Reproduction
create: OrderBased_Ordered_Crossover_Reproduction, Population, \size
create: OrderBased_Ordered_Crossover_Reproduction, History, Population, \size
private OrderBased_Ordered_Crossover_Reproduction:
breed: OrderBased_Ordered_Crossover_Reproduction, [Ordered_Representation],

Population > \succeed

class Repair_Reproduction:
ctor: > Repair_Reproduction
create: Repair_Reproduction, Population, \size
create: Repair_Reproduction, History, Population, \size
private Crossover_Reproduction:
parents: Repair_Reproduction > \number

History  Class

class History:
ctor: > History
ctor: Istream > History
print: History, Ostream
add: History, Individual, [Individual]
retrieve: History, Individual > [Individual]
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Random  Class

class Random:
ctor: > Random
ctor: \seed > Random
ctor: Istream > Random
print: Random, Ostream
value: Random > \boolean
value: Random, \range > \integer
value: Random, \lower, \upper > \integer
value: Random, \range, \precision > \real
value: Random, \lower, \upper, \precision > \real
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Appendix  E

Maintenance  Document

The toolkit is a large collection of object many of which depend on each other for their
function.  Classes for the core toolkit were written and tested in a specific order to try to
minimise the construction of test harnesses.  The Random and Ending classes are
entirely self contain and so they were chosen for the initial stages of implementation.
Each  test  harness  used  tries  all  method  calls  individually  and  also  in  certain
combinations  which  might  otherwise  have  hidden  certain  flaws.   Next  the
Representation,  Evaluation,  and Individual  were  written.   Each of  these  has  very
minimal interfaces and required only small harnesses.  The Population, Selection, and
Fitness classes form a sequence of dependence and their creation and testing followed
this.  Because of its smaller size Model was written next although testing was held
back.  The most difficult implementation area was the Creation class and its children
which are  all  highly connected.   Testing of  these classes  was combined with the
integration of all other classes.  Fault finding was more difficult because of this but
otherwise complex test harnesses would have been required.  After the initial problems
had been solved in the simplest possible toolkit organisation new components were
completed and tested in place.



Appendix  F

Status  Report

There  are  three  issues  present  in  considering  the  status  of  the  project  -  size,
functionality, and quality of the toolkit.  The Statement of Requirements demanded
support for a variety of genetic algorithm techniques and also suggested that others
would be helpful.

As a top priority a core toolkit was defined to allow the classic genetic algorithm to be
implemented  using  the  toolkit.   This  first  target  was  reached,  to  achieve  it
approximately 20 components had to function in cooperation.  Although the basic
algorithm performs perfectly well there are some design decision, such as the Attach
method for Fitness and Selector classes, which, in retrospect, might have been made
differently.  One current difficultly with the toolkit is that Individual objects are never
disposed of and because of this any genetic algorithm built  using the toolkit  will
eventually run out of memory.

There were a number of other suggested techniques such as vector, ordered list, and
number representations which have also been completed to provide support for the
more complex example algorithms.  Work on reproduction operators, particularly for
crossover, has not reached the range discussed during the design stage.  Amongst
numerous breeding techniques which could have been used only the simplest,  the
generational model, was implemented.

Another section of the Statement of Requirements gives a list of other facilities which
might be useful in a genetic algorithm toolkit.  These were all considered during the
design stage and should be possible within the confines of the current design but none
have  been  implemented.   There  are  two  areas  in  which  this  is  a  particular
disappointment - family trees provided by a History class and the saving the status of
an active genetic algorithm.

The demonstration algorithms proved that the toolkit was capable of speeding the
creation  of  genetic  algorithm  by  a  combination  of  predefined  and  extensible
components.   However,  none  of  these  examples  are  good examples  of  a  genetic
algorithm.   The  Blues  is  only  a  toy  suitable  for  the  teaching  of  ideas.   My
implementation  of  the  Travelling  Salesman  Problem  produces  very  poor  results
compared to other techniques and the violin music notation algorithm is only likely to
perform well with small data sets but does show scope for improvement.



Appendix  G

Summary  Log

August  -  September  1996
• review of available material
• initial plans possible components

October  1996
• problem definition
• statement of requirements
• component design

November  1996
• external specification
• component design
• first summary of genetic algorithms
• The Blues in Java and Ada
• Travelling Salesman Problem in Ada

December  -  January  1997
• core toolkit coding and testing

February  1997
• Travelling Salesman Problem using toolkit
• violin music notation using toolkit
• second summary of genetic algorithms

March  1997
• first draft of report

April  1997
• finalise report
• presentation

The project was allocated 12 hours each week for 21 weeks and therefore the estimated
total time spent on it is 252 hours.



Appendix  H

Project  Code

Presented here is all toolkit code completed during the project:

• mutants.ads
• mutants-core-creator.bit-mutation-reproduction.adb
• mutants-core-creator.bit-mutation-reproduction.ads
• mutants-core-creator.onepoint-vector-crossover-reproduction.ads
• mutants-core-creator.bit_random_initialise.adb
• mutants-core-creator.bit_random_initialise.ads
• mutants-core-creator.bxor.adb
• mutants-core-creator.bxor.ads
• mutants-core-creator.clone_reproduction.adb
• mutants-core-creator.clone_reproduction.ads
• mutants-core-creator.onepoint_vector_crossover-reproduction.adb
• mutants-core-creator.onepoint_vector_crossover-reproduction.ads
• mutants-core-creator.single_bit_vector_reproduction.ads
• mutants-core-creator.single_vector_reproduction.adb
• mutants-core-creator.single_vector_reproduction.ads
• mutants-core-creator.vector_bit_random_initialise.adb
• mutants-core-creator.vector_initialise.adb
• mutants-core-creator.vector_initialise.ads
• mutants-core-creator.ads
• mutants-core-ending-count.adb
• mutants-core-ending-count.ads
• mutants-core-ending-time.adb
• mutants-core-ending-time.ads
• mutants-core-ending.ads
• mutants-core-evaluation-binary_bit_vector.adb
• mutants-core-evaluation-binary_bit_vector.ads
• mutants-core-evaluation-one.adb
• mutants-core-evaluation-one.ads
• mutants-core-evaluation.ads
• mutants-core-fitness-unity.adb
• mutants-core-fitness-unity.ads
• mutants-core-fitness.ads
• mutants-core-model-generation.adb
• mutants-core-model-generation.ads



• mutants-core-model.ads
• mutants-core-model.adb
• mutants-core-population.adb
• mutants-core-population.ads
• mutants-core-random.adb
• mutants-core-random.ads
• mutants-core-representation-bit.adb
• mutants-core-representation-bit.ads
• mutants-core-representation-bit_vector.ads
• mutants-core-representation-integer.adb
• mutants-core-representation-integer.ads
• mutants-core-representation-order.adb
• mutants-core-representation-order.ads
• mutants-core-representation-vector.adb
• mutants-core-representation-vector.ads
• mutants-core-representation.ads
• mutants-core-selector-antiroulette.adb
• mutants-core-selector-antiroulette.ads
• mutants-core-selector-cyclic.adb
• mutants-core-selector-cyclic.ads
• mutants-core-selector-high.adb
• mutants-core-selector-high.ads
• mutants-core-selector-low.adb
• mutants-core-selector-low.ads
• mutants-core-selector-roulette.adb
• mutants-core-selector-roulette.ads
• mutants-core-selector.ads
• mutants-extended-creator-integer_order_initialise.adb
• mutants-extended-creator-integer_order_initialise.ads
• mutants-extended-creator-integer_order_mutation_reproduction.ads
• mutants-extended-creator-integer_order_random_reproduction.ads
• mutants-extended-creator-order_crossover_reproduction.adb
• mutants-extended-creator-order_crossover_reproduction.ads
• mutants-extended-creator-order_initialise.adb
• mutants-extended-creator-order_initialise.ads
• mutants-extended-creator-order_mutation_reproduction.adb
• mutants-extended-creator-order_mutation_reproduction.ads
• mutants-extended-creator-order_random_reproduction.ads
• mutants-extended-creator-order_random_reproduction.ads
• mutants-extended-creator.ads
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• mutants-extended-evaluation.ads
• mutants-extended-representation-bit_vector.ads
• mutants-extended-representation-integer_order.ads
• mutants-extended-representation.ads
• mutants-extended.ads

This is the code for the example genetic algorithms constructed using the toolkit:

• blues.adb
• blues_evaluation.adb
• blues_evaluation.ads
• tsp.adb
• tsp_evaluation.adb
• tsp_evaluation.ads
• music.adb
• music_evaluation.adb
• music_evaluation.ads

Project Code

76


